Giù Marcer
7ad45a829e
In addition, the folder ex-7/iters was created in order to plot the results of the Perceptron method as a function of the iterations parameter.
197 lines
4.9 KiB
C
197 lines
4.9 KiB
C
#include "fisher.h"
|
||
#include <math.h>
|
||
#include <gsl/gsl_matrix.h>
|
||
#include <gsl/gsl_linalg.h>
|
||
|
||
/* Builds the covariance matrix Σ
|
||
* from the standard parameters (σ, ρ)
|
||
* of a bivariate gaussian.
|
||
*/
|
||
gsl_matrix* normal_cov(struct par *p) {
|
||
double var_x = pow(p->sigma_x, 2);
|
||
double var_y = pow(p->sigma_y, 2);
|
||
double cov_xy = p->rho * p->sigma_x * p->sigma_y;
|
||
|
||
gsl_matrix *cov = gsl_matrix_alloc(2, 2);
|
||
gsl_matrix_set(cov, 0, 0, var_x);
|
||
gsl_matrix_set(cov, 1, 1, var_y);
|
||
gsl_matrix_set(cov, 0, 1, cov_xy);
|
||
gsl_matrix_set(cov, 1, 0, cov_xy);
|
||
|
||
return cov;
|
||
}
|
||
|
||
|
||
/* Builds the mean vector of
|
||
* a bivariate gaussian.
|
||
*/
|
||
gsl_vector* normal_mean(struct par *p) {
|
||
gsl_vector *mu = gsl_vector_alloc(2);
|
||
gsl_vector_set(mu, 0, p->x0);
|
||
gsl_vector_set(mu, 1, p->y0);
|
||
|
||
return mu;
|
||
}
|
||
|
||
|
||
/* `fisher_proj(c1, c2)` computes the optimal
|
||
* projection map, which maximises the separation
|
||
* between the two classes.
|
||
* The projection vector w is given by
|
||
*
|
||
* w = Σ_w⁻¹ (μ₂ - μ₁)
|
||
*
|
||
* where Σ_w = Σ₁ + Σ₂ is the so-called within-class
|
||
* covariance matrix.
|
||
*/
|
||
gsl_vector* fisher_proj(sample_t *c1, sample_t *c2) {
|
||
/* Construct the covariances of each class... */
|
||
gsl_matrix *cov1 = normal_cov(&c1->p);
|
||
gsl_matrix *cov2 = normal_cov(&c2->p);
|
||
|
||
/* and the mean values */
|
||
gsl_vector *mu1 = normal_mean(&c1->p);
|
||
gsl_vector *mu2 = normal_mean(&c2->p);
|
||
|
||
/* Compute the inverse of the within-class
|
||
* covariance Σ_w⁻¹.
|
||
* Note: by definition Σ is symmetrical and
|
||
* positive-definite, so Cholesky is appropriate.
|
||
*/
|
||
|
||
gsl_matrix_add(cov1, cov2);
|
||
gsl_linalg_cholesky_decomp(cov1);
|
||
gsl_linalg_cholesky_invert(cov1);
|
||
|
||
/* Compute the difference of the means. */
|
||
gsl_vector *diff = gsl_vector_alloc(2);
|
||
gsl_vector_memcpy(diff, mu2);
|
||
gsl_vector_sub(diff, mu1);
|
||
|
||
/* Finally multiply diff by Σ_w.
|
||
* This uses the rather low-level CBLAS
|
||
* functions gsl_blas_dgemv:
|
||
*
|
||
* ___ double ___ 1 ___ nothing
|
||
* / / /
|
||
* dgemv computes y := α op(A)x + βy
|
||
* \ \__matrix-vector \____ 0
|
||
* \__ A is symmetric
|
||
*/
|
||
gsl_vector *w = gsl_vector_alloc(2);
|
||
gsl_blas_dgemv(
|
||
CblasNoTrans, // do nothing on A
|
||
1, // α = 1
|
||
cov1, // matrix A
|
||
diff, // vector x
|
||
0, // β = 0
|
||
w); // vector y
|
||
|
||
/* Normalise the weights and force
|
||
* positiveness for easier
|
||
* comparison with other methods.
|
||
*/
|
||
double norm = gsl_blas_dnrm2(w);
|
||
if (gsl_vector_isneg(w))
|
||
norm = -norm;
|
||
gsl_vector_scale(w, 1/norm);
|
||
|
||
// free memory
|
||
gsl_matrix_free(cov1);
|
||
gsl_matrix_free(cov2);
|
||
gsl_vector_free(mu1);
|
||
gsl_vector_free(mu2);
|
||
gsl_vector_free(diff);
|
||
|
||
return w;
|
||
}
|
||
|
||
|
||
/* `fisher_cut(ratio, w, c1, c2)` computes
|
||
* the threshold (cut), on the line given by
|
||
* `w`, to discriminates the classes `c1`, `c2`;
|
||
* with `ratio` being the ratio of their prior
|
||
* probabilities.
|
||
*
|
||
* The cut is fixed by the condition of
|
||
* conditional probability being the
|
||
* same for each class:
|
||
*
|
||
* P(c₁|x) p(x|c₁)⋅p(c₁)
|
||
* ------- = --------------- = 1;
|
||
* P(c₂|x) p(x|c₂)⋅p(c₂)
|
||
*
|
||
* where p(x|c) is the probability for point x
|
||
* along the fisher projection line. If the classes
|
||
* are bivariate gaussian then p(x|c) is simply
|
||
* given by a normal distribution:
|
||
*
|
||
* Φ(μ=(w,μ), σ=(w,Σw))
|
||
*
|
||
* The solution is then
|
||
*
|
||
* t = (b/a) + √((b/a)² - c/a);
|
||
*
|
||
* where
|
||
*
|
||
* 1. a = S₁² - S₂²
|
||
* 2. b = M₂S₁² - M₁S₂²
|
||
* 3. c = M₂²S₁² - M₁²S₂² - 2S₁²S₂² log(α)
|
||
* 4. α = p(c₁)/p(c₂)
|
||
*
|
||
*/
|
||
double fisher_cut(
|
||
double ratio,
|
||
gsl_vector *w,
|
||
sample_t *c1, sample_t *c2) {
|
||
|
||
/* Create a temporary vector variable */
|
||
gsl_vector *vtemp = gsl_vector_alloc(w->size);
|
||
|
||
/* Construct the covariances of each class... */
|
||
gsl_matrix *cov1 = normal_cov(&c1->p);
|
||
gsl_matrix *cov2 = normal_cov(&c2->p);
|
||
|
||
/* and the mean values */
|
||
gsl_vector *mu1 = normal_mean(&c1->p);
|
||
gsl_vector *mu2 = normal_mean(&c2->p);
|
||
|
||
/* Project the distribution onto the
|
||
* w line to get a 1D gaussian
|
||
*/
|
||
|
||
/* Mean: mi = (w, μi) */
|
||
double m1; gsl_blas_ddot(w, mu1, &m1);
|
||
double m2; gsl_blas_ddot(w, mu2, &m2);
|
||
|
||
/* Variance: vari = (w, covi⋅w)
|
||
*
|
||
* vtemp = covi⋅w
|
||
* vari = w⋅vtemp
|
||
*/
|
||
gsl_blas_dgemv(CblasNoTrans, 1, cov1, w, 0, vtemp);
|
||
double var1; gsl_blas_ddot(w, vtemp, &var1);
|
||
gsl_blas_dgemv(CblasNoTrans, 1, cov2, w, 0, vtemp);
|
||
double var2; gsl_blas_ddot(w, vtemp, &var2);
|
||
|
||
/* Solve the P(c₁|x) = P(c₂|x) equation:
|
||
*
|
||
* ax² - 2bx + c = 0
|
||
*
|
||
* with a,b,c given as above.
|
||
*
|
||
*/
|
||
double a = var1 - var2;
|
||
double b = m2*var1 + m1*var2;
|
||
double c = m2*m2*var1 - m1*m1*var2 + 2*var1*var2 * log(ratio);
|
||
|
||
// free memory
|
||
gsl_vector_free(mu1);
|
||
gsl_vector_free(mu2);
|
||
gsl_vector_free(vtemp);
|
||
gsl_matrix_free(cov1);
|
||
gsl_matrix_free(cov2);
|
||
|
||
return (b/a) + sqrt(pow(b/a, 2) - c/a);
|
||
}
|