analistica/ex-4/main.c
2020-07-05 11:36:22 +02:00

212 lines
5.9 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include "lib.h"
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_min.h>
#include <gsl/gsl_deriv.h>
/* Process CLI arguments and print usage */
int parser(size_t *N, size_t *n, double *p_max,
size_t argc, char **argv, size_t *go) {
for (size_t i = 1; i < argc; i++) {
if (!strcmp(argv[i], "-n")) *N = atol(argv[++i]);
else if (!strcmp(argv[i], "-b")) *n = atol(argv[++i]);
else if (!strcmp(argv[i], "-p")) *p_max = atof(argv[++i]);
else if (!strcmp(argv[i], "-o")) *go = 1;
else {
fprintf(stderr, "Usage: %s -[hnbpo]\n", argv[0]);
fprintf(stderr, "\t-h\tShow this message.\n");
fprintf(stderr, "\t-n N\tThe number of particles to generate. (default: 50000)\n");
fprintf(stderr, "\t-b N\tThe number of bins of the histogram. (default: 50)\n");
fprintf(stderr, "\t-p PMAX\tThe maximum value of momentum. (default: 10)\n");
fprintf(stderr, "\t-o\tPrint histogram to stdout.\n");
return 0;
}
}
return 1;
}
int main(int argc, char **argv) {
// Set default options.
size_t N = 50000;
size_t n = 50;
double p_max = 10;
size_t go = 0;
// Get eventual CLI arguments.
int res = parser(&N, &n, &p_max, argc, argv, &go);
if (go == 0 && res == 1) {
printf("Generating histogram with:\n"
"%ld points\n"
"%ld bins\n"
"p_max = %.3f\n\n", N, n, p_max);
}
else if (res == 0)
return EXIT_FAILURE;
// Initialize an RNG.
gsl_rng_env_setup();
gsl_rng *r = gsl_rng_alloc(gsl_rng_default);
/* Generate the angle θ uniformly distributed on a sphere using the
* inverse transform:
*
* θ = acos(1 - 2X)
*
* where X is a random uniform variable in [0,1), and the module p of
* the vector:
*
* p² = p_v² + p_h²
*
* uniformly distributed between 0 and p_max. The two components are
* then computed as:
*
* p_v = p⋅cos(θ)
* p_h = p⋅sin(θ)
*
* The histogram is updated this way.
* The j-th bin where p_h goes in is given by:
*
* step = p_max / n
* j = floor(p_h / step)
*
* Thus an histogram was created and a structure containing the number of
* entries in each bin and the sum of |p_v| in each of them is created and
* filled while generating the events (struct bin).
*/
struct bin *histo = calloc(n, sizeof(struct bin));
// Some useful variables.
double step = p_max / n;
struct bin *b;
double theta;
double p;
double p_v;
double p_h;
size_t j;
for (size_t i = 0; i < N; i++) {
// Generate the event
theta = acos(1 - 2*gsl_rng_uniform(r));
p = p_max * gsl_rng_uniform(r);
// Compute the components
p_v = p * cos(theta);
p_h = p * sin(theta);
// Update the histogram
j = floor(p_h / step);
b = &histo[j];
b -> amo++;
b -> sum += fabs(p_v);
}
/* Compute the mean value of each bin and print it to stodut
* together with other useful things to make the histogram.
*/
if (go == 1) {
printf("bins: \t%ld\n", n);
printf("step: \t%.5f\n", step);
}
for (size_t i = 0; i < n; i++) {
histo[i].sum = histo[i].sum / histo[i].amo; // Average P_v
if (go == 1) printf("\n%.5f", histo[i].sum);
};
/* Compare the histogram with the expected function:
*
* x * log(p_max/x)/arctan(sqrt(p_max^2/x^2 - 1))
*
* using the χ² test.
*/
struct parameters params;
params.histo = histo;
params.n = n;
params.step = step;
gsl_function func;
func.function = &chi2;
func.params = &params;
double min_p = p_max - 5;
double max_p = p_max + 5;
// Initialize minimization
double x = p_max;
int max_iter = 100;
double prec = 1e-7;
int status = GSL_CONTINUE;
const gsl_min_fminimizer_type *T = gsl_min_fminimizer_brent;
gsl_min_fminimizer *s = gsl_min_fminimizer_alloc(T);
gsl_min_fminimizer_set(s, &func, x, min_p, max_p);
// Minimization
for (int iter = 0; status == GSL_CONTINUE && iter < max_iter; iter++) {
status = gsl_min_fminimizer_iterate(s);
x = gsl_min_fminimizer_x_minimum(s);
min_p = gsl_min_fminimizer_x_lower(s);
max_p = gsl_min_fminimizer_x_upper(s);
status = gsl_min_test_interval(min_p, max_p, 0, prec);
}
double result = x;
double res_chi = chi2(result, &params);
if (go == 0) {
printf("Results:\n");
printf("χ² = %.3f\n", res_chi);
printf("p_max = %.3f\n", result);
}
/* Compute the second derivative of χ² in its minimum for the result error.
*
* p_max = α
* 2
* (Eᵢ - Oᵢ)
* χ² = Σi ──────────
* Eᵢ
*
* ⎛ 2⎞
* ⎜ Oᵢ ⎟
* ∂αχ² = Σi Eᵢ⋅⎜1 - ───⎟⋅∂αE
* ⎜ 2⎟
* ⎝ Eᵢ ⎠
*
* ⎛ 2 ⎛ 2⎞ ⎞
* ⎜ Oᵢ ⎜ Oᵢ ⎟ ⎟
* ∂²αχ² = Σi ⎜(∂αE)²⋅2⋅─── + ∂²αE ⋅⎜1 - ───⎟ ⎟
* ⎜ 2 ⎜ 2⎟ ⎟
* ⎝ Eᵢ ⎝ Eᵢ ⎠ ⎠
*/
double expecto, A, B;
double error = 0;
for (size_t i = 0; i < n; i++) {
x = (i + 0.5) * step;
expecto = expected(x, result);
A = 2 * pow(exp1d(x, result) * histo[i].sum / expecto, 2);
B = exp2d(x, result) * (1 - pow((histo[i].sum / expecto), 2));
error = error + A + B;
};
error = 1/error;
if (go == 0)
printf("ΔP_max = %.3f\n", error);
// Check compatibility
double t = fabs(result - p_max)/error;
double alpha = 1 - erf(t/sqrt(2));
if (go == 0) {
printf("\nCompatibility:\n");
printf("t = %.3f\n", t);
printf("α = %.3f\n\n", alpha);
}
// Free memory
gsl_min_fminimizer_free(s);
gsl_rng_free(r);
free(histo);
return EXIT_SUCCESS;
}