#include #include #include "fisher.h" /* Options for the program */ struct options { char *mode; size_t nsig; size_t nnoise; }; int main(int argc, char **argv) { /* Set default options */ struct options opts; opts.mode = "fisher"; opts.nsig = 800; opts.nnoise = 1000; /* Process CLI arguments */ for (size_t i = 1; i < argc; i++) { if (!strcmp(argv[i], "-m")) opts.mode = argv[++i]; else if (!strcmp(argv[i], "-s")) opts.nsig = atol(argv[++i]); else if (!strcmp(argv[i], "-n")) opts.nnoise = atol(argv[++i]); else { fprintf(stderr, "Usage: %s -[hiIntp]\n", argv[0]); fprintf(stderr, "\t-h\tShow this message.\n"); fprintf(stderr, "\t-m MODE\tThe disciminant to use: 'fisher' for " "Fisher linear discriminant, 'percep' for perceptron.\n"); fprintf(stderr, "\t-s N\tThe number of events in signal class.\n"); fprintf(stderr, "\t-n N\tThe number of events in noise class.\n"); return EXIT_FAILURE; } } // initialize RNG gsl_rng_env_setup(); gsl_rng *r = gsl_rng_alloc(gsl_rng_default); /* Generate two classes of normally * distributed 2D points with different * paramters: signal and noise. */ struct par par_sig = { 0, 0, 0.3, 0.3, 0.5 }; struct par par_noise = { 4, 4, 1.0, 1.0, 0.4 }; sample_t *signal = generate_normal(r, opts.nsig, &par_sig); sample_t *noise = generate_normal(r, opts.nnoise, &par_noise); if (!strcmp(opts.mode, "fisher")) { /* Fisher linear discriminant * * First calculate the direction w onto * which project the data points. Then the * cut which determines the class for each * projected point. */ double ratio = opts.nsig / (double)opts.nnoise; gsl_vector *w = fisher_proj(signal, noise); double t_cut = fisher_cut(ratio, w, signal, noise); fputs("# Linear Fisher discriminant\n\n", stderr); fprintf(stderr, "* w: [%.3f, %.3f]\n", gsl_vector_get(w, 0), gsl_vector_get(w, 1)); fprintf(stderr, "* t_cut: %.3f\n", t_cut); gsl_vector_fprintf(stdout, w, "%g"); printf("%f\n", t_cut); } /* Print data to stdout for plotting. * Note: we print the sizes to be able * to set apart the two matrices. */ printf("%ld %ld %d\n", opts.nsig, opts.nnoise, 2); gsl_matrix_fprintf(stdout, signal->data, "%g"); gsl_matrix_fprintf(stdout, noise->data, "%g"); // free memory gsl_rng_free(r); sample_t_free(signal); sample_t_free(noise); return EXIT_SUCCESS; }