# MC simulations ## In summary ----------------------------------------------------- Landau Moyal ----------------- ----------------- ----------------- median $m_L\ex$ $m_M\ex (μ, σ)$ mode $\mu_L\ex$ $\mu_M\ex (μ)$ FWHM $w_L\ex$ $w_M\ex (σ)$ ----------------------------------------------------- ## Moyal parameters A $M(x)$ similar to $L(x)$ can be found by imposing: \vspace{15pt} - equal mode $$ \mu_M\ex = \mu_L\ex \approx −0.22278298... $$ . . . - equal width $$ w_M\ex = w_L\ex = \sigma \cdot a $$ $$ \implies \sigma_M \approx 1.1191486... $$ ## Moyal parameters :::: {.columns} ::: {.column width=50%} ![](images/both-pdf-bef.pdf) ::: ::: {.column width=50%} ![](images/both-pdf-aft.pdf) ::: :::: ## Moyal parameters This leads to more different medians: \begin{align*} m_M = 0.787... \thus &m_M = 0.658... \\ &m_L = 1.355... \end{align*} ## Landau Sample Sample N random points following $L(x)$ $$ L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty} dt \, e^{-t \ln(t) -xt} \sin (\pi t) $$ . . . gsl_ran_Landau(gsl_rng) ## Moyal sample Sample N random points following $M_{\mu \sigma}(x)$ $$ M_{\mu \sigma}(x) = \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[ - \frac{1}{2} \left( \frac{x - \mu}{\sigma} + e^{-\frac{x - \mu}{\sigma}} \right) \right] $$ . . . reverse sampling - sampling $y$ uniformly in [0, 1] $\hence x = Q_M(y)$