#include #include #include #include #include #include "common.h" #include "fft.h" #include "rl.h" #include "dist.h" /* Program options */ struct options { size_t num_events; size_t num_exps; size_t bins; double sigma; size_t rounds; const char* mode; double noise; }; /* A pair of `double`s */ typedef struct { double a; double b; } pair_t; int show_help(char **argv) { fprintf(stderr, "Usage: %s -[hexbsrn]\n", argv[0]); fprintf(stderr, " -h\t\tShow this message.\n"); fprintf(stderr, " -e N\t\tThe number of events. (default: 50000)\n"); fprintf(stderr, " -x N\t\tThe number of experiments to run. (default: 1000)\n"); fprintf(stderr, " -b N\t\tThe number of θ bins. (default: 150)\n"); fprintf(stderr, " -s SIGMA\tThe sigma of gaussian kernel. " "(default: 0.8)\n"); fprintf(stderr, " -r N\t\tThe number of RL deconvolution rounds." "(default: 3)\n"); fprintf(stderr, " -n SIGMA\tThe σ of the gaussian noise to add to " "the convolution. (default: 0)\n"); return EXIT_SUCCESS; } /* Performs an experiment consisting in * * 1. Measuring the distribution I(θ) by reverse * sampling from an RNG; * 2. Convolving the I(θ) sample with a kernel * to simulate the instrumentation response; * 3. Applying a gaussian noise with σ=opts.noise * 4. Deconvolving the result with both the * Richardson-Lucy (RL) algorithm and the Fourier * transform (FFT) method; * 5. Computing the Earth Mover's Distance (EMD) between * the deconvolution results and the original, * uncorrupted sample. * * The function returns a pair of the FFT and RL * distances, in this order. */ pair_t experiment( struct options opts, gsl_rng *r, gsl_histogram *kernel) { struct param p = { 0.01, 0.0001, 1e4, 1 }; /* Sample events following the intensity * of a circular aperture diffraction I(θ) * while producing a histogram. */ gsl_histogram* hist = gsl_histogram_alloc(opts.bins); gsl_histogram_set_ranges_uniform(hist, 0, M_PI/2); for (size_t i = 0; i < opts.num_events; i++){ double theta; do { // uniform sphere polar angle theta = acos(1 - gsl_rng_uniform(r)); } while(intensity(0, p) * gsl_rng_uniform(r) > intensity(theta, p)); gsl_histogram_increment(hist, theta); } /* Convolve the hisogram with the kernel */ gsl_histogram *conv = histogram_convolve(hist, kernel); /* Add gaussian noise with σ=opts.noise */ if (opts.noise > 0) { for (size_t i = 0; i < conv->n; i++) conv->bin[i] += conv->bin[i] * gsl_ran_gaussian(r, opts.noise); } /* Deconvolve the histogram with both methods: RL and FFT. * The FFT is used as reference for the distance. */ gsl_histogram *fft_clean = fft_deconvolve(conv, kernel); gsl_histogram *rl_clean = rl_deconvolve(conv, kernel, opts.rounds); /* Compute the earth mover's distances from the original * histogram and store add each one to the respective * distance histogram. */ pair_t dist; dist.a = emd_between(hist, fft_clean); dist.b = emd_between(hist, rl_clean); // free memory gsl_histogram_free(hist); gsl_histogram_free(conv); gsl_histogram_free(fft_clean); gsl_histogram_free(rl_clean); return dist; } int main(int argc, char **argv) { struct options opts; /* Set default options */ opts.num_events = 50000; opts.num_exps = 1000; opts.bins = 150; opts.sigma = 0.8; opts.rounds = 3; opts.mode = "fft"; opts.noise = 0; /* Process CLI arguments */ for (int i = 1; i < argc; i++) { if (!strcmp(argv[i], "-e")) opts.num_events = atol(argv[++i]); else if (!strcmp(argv[i], "-x")) opts.num_exps = atol(argv[++i]); else if (!strcmp(argv[i], "-b")) opts.bins = atol(argv[++i]); else if (!strcmp(argv[i], "-s")) opts.sigma = atof(argv[++i]); else if (!strcmp(argv[i], "-r")) opts.rounds = atol(argv[++i]); else if (!strcmp(argv[i], "-n")) opts.noise = atof(argv[++i]); else return show_help(argv); } /* Initialize an RNG. */ gsl_rng_env_setup(); gsl_rng *r = gsl_rng_alloc(gsl_rng_default); /* Generate the gaussian kernel */ gsl_histogram *kernel = gaussian_kernel(opts.bins, opts.sigma); /* Performs experiments and record the deconvolution * EMD distances to the original sample. */ double* fft_dist = calloc(opts.num_exps, sizeof(double)); double* rl_dist = calloc(opts.num_exps, sizeof(double)); for (size_t i = 0; i < opts.num_exps; i++) { pair_t dist = experiment(opts, r, kernel); fft_dist[i] = dist.a; rl_dist[i] = dist.b; } /* Compute some statistics of the EMD */ // 1 is the array stride. double fft_mean = gsl_stats_mean(fft_dist, 1, opts.num_exps); double fft_stdev = gsl_stats_sd(fft_dist, 1, opts.num_exps); double fft_skew = gsl_stats_skew_m_sd(fft_dist, 1, opts.num_exps, fft_mean, fft_stdev); double fft_min, fft_max; gsl_stats_minmax(&fft_min, &fft_max, fft_dist, 1, opts.num_exps); double rl_mean = gsl_stats_mean(rl_dist, 1, opts.num_exps); double rl_stdev = gsl_stats_sd(rl_dist, 1, opts.num_exps); double rl_skew = gsl_stats_skew_m_sd(rl_dist, 1, opts.num_exps, rl_mean, rl_stdev); double rl_min, rl_max; gsl_stats_minmax(&rl_min, &rl_max, rl_dist, 1, opts.num_exps); double conv_mean = gsl_stats_mean(conv_dist, 1, opts.num_exps); double conv_stdev = gsl_stats_sd(conv_dist, 1, opts.num_exps); double conv_skew = gsl_stats_skew_m_sd(conv_dist, 1, opts.num_exps, conv_mean, conv_stdev); double conv_min, conv_max; gsl_stats_minmax(&conv_min, &conv_max, conv_dist, 1, opts.num_exps); /* Create EMD distance histograms. * Since the distance depends wildly on the noise we can't * set a fixed range and therefore use the above values. */ gsl_histogram *fft_hist = gsl_histogram_alloc(sqrt(opts.num_exps)); gsl_histogram *rl_hist = gsl_histogram_alloc(sqrt(opts.num_exps)); gsl_histogram_set_ranges_uniform(fft_hist, fft_min, fft_max); gsl_histogram_set_ranges_uniform(rl_hist, rl_min, rl_max); for (size_t i = 0; i < opts.num_exps; i++) { gsl_histogram_increment(fft_hist, fft_dist[i]); gsl_histogram_increment( rl_hist, rl_dist[i]); } // print results to stderr fprintf(stderr, "# EMD distance\n\n"); fprintf(stderr, "## FFT deconvolution\n"); fprintf(stderr, "- mean: %.2e\n" "- stdev: %.1e\n" "- skew: %.2f\n", fft_mean, fft_stdev, fft_skew); fprintf(stderr, "\n## RL deconvolution\n"); fprintf(stderr, "- mean: %.2e\n" "- stdev: %.1e\n" "- skew: %.2f\n", rl_mean, rl_stdev, rl_skew); // print histograms to stdout fprintf(stderr, "\n# EMD histogram\n"); fprintf(stdout, "%d\n", (int)sqrt(opts.num_exps)); gsl_histogram_fprintf(stdout, fft_hist, "%g", "%g"); gsl_histogram_fprintf(stdout, rl_hist, "%g", "%g"); // free memory gsl_rng_free(r); gsl_histogram_free(kernel); gsl_histogram_free(fft_hist); gsl_histogram_free(rl_hist); free(fft_dist); free(rl_dist); return EXIT_SUCCESS; }