# Trapani test ## Infinite moments For a Landau PDF: \begin{align*} E_L[x] &\longrightarrow + \infty \\ V_L[x] \text{undefined} \end{align*} . . . For a Moyal PDF: \begin{align*} E_M[x] &= \mu + \sigma [ \gamma + \ln(2) ] \\ V_M[x] &= \frac{\pi^2 \sigma^2}{2} \end{align*} ## Infinite moments - Check whether a moment is finite or infinite \begin{align*} \text{infinite} &\thus Landau \\ \text{finite} &\thus Moyal \end{align*} . . . # Trapani test ## Trapani test ::: incremental - Random variable $\left\{ x_i \right\}$ sampled from a distribution $f$ - Sample moments according to $f$ moments - $H_0$: $\mu_k \longrightarrow + \infty$ - Statistic with 1 dof chi-squared distribution ::: ## Trapani test - Start with $\left\{ x_i \right\}^N$ and compute $\mu_k$ as: $$ \mu_k = \frac{1}{N} \sum_{i = 1}^N |x_i|^k $$ . . . - Generate $r$ points $\left\{ \xi_j\right\}^r$ according to $G(0, 1)$ and define $\left\{ a_j \right\}^r$ as: $$ a_j = \sqrt{e^{\mu_k}} \cdot \xi_j \thus G'\left( 0, \sqrt{e^{\mu_k}} \right) $$ . . . The greater $\mu^k$, the 'larger' $G'$ - if $\mu_k \longrightarrow + \infty \thus a_j$ distributed uniformly ## Trapani test - Define the sequence: $\left\{ \zeta_j (u) \right\}^r$ as: $$ \zeta_j (u) = \theta( u - a_j) \with \theta - \text{Heaviside} $$ . . . \begin{center} \begin{tikzpicture} \definecolor{cyclamen}{RGB}{146,24,43} % line \draw [line width=3, ->, cyclamen] (0,0) -- (10,0); \node [right] at (10,0) {$u$}; % tic \draw [thick] (5,-0.3) -- (5,0.3); \node [above] at (5,0.3) {$u_0$}; % aj tics \draw [thick, cyclamen] (1,-0.2) -- (1,0.2); \node [below right, cyclamen] at (1,-0.2) {$a_{j+2}$}; \draw [thick, cyclamen] (2,-0.2) -- (2,0.2); \node [below right, cyclamen] at (2,-0.2) {$a_j$}; \draw [thick, cyclamen] (5.2,-0.2) -- (5.2,0.2); \node [below right, cyclamen] at (5.2,-0.2) {$a_{j+2}$}; \draw [thick, cyclamen] (6,-0.2) -- (6,0.2); \node [below right, cyclamen] at (6,-0.2) {$a_{j+3}$}; \draw [thick, cyclamen] (8.5,-0.2) -- (8.5,0.2); \node [below right, cyclamen] at (8.5,-0.2) {$a_{j+4}$}; % notes \node [below] at (1,-1) {0}; \node [below] at (2,-1) {0}; \node [below] at (5.2,-1) {1}; \node [below] at (6,-1) {1}; \node [below] at (8.5,-1) {1}; \draw [thick, ->] (1,-0.5) -- (1,-1); \draw [thick, ->] (2,-0.5) -- (2,-1); \draw [thick, ->] (5.2,-0.5) -- (5.2,-1); \draw [thick, ->] (6,-0.5) -- (6,-1); \draw [thick, ->] (8.5,-0.5) -- (8.5,-1); \end{tikzpicture} \end{center} . . . If $a_j$ uniformly distributed and $N \rightarrow + \infty$: - $\zeta_j (u)$ Bernoulli PDF with $P(\zeta_j (u) = 1) = \frac{1}{2}$ ## Trapani test - Define the function $\vartheta (u)$ as: $$ \vartheta (u) = \frac{2}{\sqrt{r}} \left[ \sum_{j} \zeta_j (u) - \frac{r}{2} \right] $$ . . . If $a_j$ uniformly distributed and $N \rightarrow + \infty$, for the CLT: $$ \sum_j \zeta_j (u) \hence G \left( \frac{r}{2}, \frac{r}{4} \right) \thus \vartheta (u) \hence G \left( 0, 1 \right) $$ . . . - Test statistic: $$ \Theta = \int_{\underbar{u}}^{\bar{u}} du \, \vartheta^2 (u) \psi(u) $$ ## Trapani test According to L. Trapani (10.1016/j.jeconom.2015.08.006): - $r = o(N) \hence r = N^{0.75}$ - $\underbar{u} = 1 \quad \wedge \quad \bar{u} = 1$ - $\psi(u) = \chi_{[\underbar{u}, \bar{u}]}$ . . . $\mu_k$ must be scale invariant for $k > 1$: $$ \tilde{\mu_k} = \frac{\mu_k}{ \left( \mu_{\phi} \right)^{k/\phi} } \with \phi \in (0, k) $$ ## Trapani test If $\mu_k \ne + \infty \hence \left\{ a_j \right\}$ are not uniformly distributed \vspace{20pt} Rewriting: $$ \vartheta (u) = \frac{2}{\sqrt{r}} \left[ \sum_{j} \zeta_j (u) - \frac{r}{2} \right] = \frac{2}{\sqrt{r}} \sum_{j} \left[ \zeta_j (u) - \frac{1}{2} \right] $$ \vspace{20pt} Residues become very large $\hence$ $p$-values decreases. # Samples results ## Samples results . . . Landau sample: :::: {.columns} ::: {.column width=33%} $$ \mu_1 \begin{cases} \Theta = 0.255 \\ p = 0.614 \end{cases} $$ ::: ::: {.column width=33% .c} $$ \mu_2 \begin{cases} \Theta = 0.432 \\ p = 0.511 \end{cases} $$ ::: ::: {.column width=33% .c} $$ \hence \text{Infinite!} $$ ::: :::: . . . \vspace{20pt} Moyal sample: :::: {.columns} ::: {.column width=33%} $$ \mu_1 \begin{cases} \Theta^2 = 106 \\ p = 0.000 \end{cases} $$ ::: ::: {.column width=33%} $$ \mu_2 \begin{cases} \Theta^2 = 162 \\ p = 0.000 \end{cases} $$ ::: ::: {.column width=33% .c} $$ \hence \text{Finite!} $$ ::: ::::