#include #include #include #include #include #include "landau.h" #include "moyal.h" #include "tests.h" #include "bootstrap.h" /* Here we generate random numbers following * the Landau or the Moyal distribution and run a * series of test to check if they seem to belong * to the Landau distribution. */ int main(int argc, char** argv) { size_t samples = 50000; char* distr = "lan"; double m_params[2] = {-0.22278298, 1.1191486}; /* Process CLI arguments */ for (size_t i = 1; i < (size_t)argc; i++) { if (!strcmp(argv[i], "-n")) samples = atol(argv[++i]); else if (!strcmp(argv[i], "-m")) distr = argv[++i]; else { fprintf(stderr, "Usage: %s -[hnmp]\n", argv[0]); fprintf(stderr, " -h\t\tShow this message.\n"); fprintf(stderr, " -n N\t\tThe size of sample to generate. (default: 50000)\n"); fprintf(stderr, " -m MODE\tUse Landau 'lan' or Moyal 'moy' distribution. " "(default: 'lan')\n"); return EXIT_FAILURE; } } // initialize an RNG gsl_rng_env_setup(); gsl_rng *r = gsl_rng_alloc(gsl_rng_default); // prepare data storage double* sample = calloc(samples, sizeof(double)); double min = -10; double max = 10; /* Sample generation */ fprintf(stderr, "# Sampling\n"); fprintf(stderr, "generating %ld points... ", samples); /* Sample points from the Landau distribution * using the GSL Landau generator or from the * Moyal distribution using inverse sampling. */ for(size_t i=0; i < samples; i++){ if (!strcmp(distr, "lan")) sample[i] = gsl_ran_landau(r); if (!strcmp(distr, "moy")) sample[i] = moyal_qdf(gsl_rng_uniform(r), m_params); } fprintf(stderr, "done\n"); // sort the sample: needed for HSM and KS tests qsort(sample, samples, sizeof(double), &cmp_double); /* Kolmogorov-Smirnov test * * Compute the D statistic and its * associated probability. */ fprintf(stderr, "\n\n# Kolmogorov-Smirnov test\n"); double D = 0; double d; for(size_t i = 0; i < samples; i++) { d = fabs(landau_cdf(sample[i], NULL) - ((double)i+1)/samples); if (d > D) D = d; } double beta = kolmogorov_cdf(D, samples); // print the results fprintf(stderr, "\n## Results\n"); fprintf(stderr, "D=%g\n", D); fprintf(stderr, "p=%.3f\n", 1 - beta); /* Mode comparison * * Compute the half-sample mode by bootstrapping * and compare the result with the value found by * numerical maximisation of the PDF. */ fprintf(stderr, "\n\n# Mode comparison\n"); /* A structure used by the optimisation * routines in numeric_mode and others * functions below. */ gsl_function pdf; pdf.function = &landau_pdf; pdf.params = NULL; // number of bootstrap samples const size_t boots = 100; double mode_e = numeric_mode(min, max, &pdf, 1); uncert mode_o = bootstrap_mode(r, sample, samples, boots); // print the results fprintf(stderr, "\n## Results\n"); fprintf(stderr, "expected mode: %.8f\n", mode_e); fprintf(stderr, "observed mode: %.4f±%.4f\n", mode_o.n, mode_o.s); // t-test double t = fabs(mode_e - mode_o.n)/mode_o.s; double p = 1 - erf(t/sqrt(2)); fprintf(stderr, "\n## t-test\n"); fprintf(stderr, "t=%.3f\n", t); fprintf(stderr, "p=%.3f\n", p); /* FWHM comparison * * Estimate the FWHM of the sample by constructing * an empirical PDF via a KDE method and applying * the definition on it (numerical solution of * `f(x) = max/2` ⇒ x₁-x₀). This is again bootstrapped * to estimate the standard errors and compared against * the numerical value of FWHM from the true PDF. */ fprintf(stderr, "\n\n# FWHM comparison\n"); double fwhm_e = numeric_fwhm(min, max, &pdf, 1); uncert fwhm_o = bootstrap_fwhm(r, min, max, sample, samples, boots); // print the results fprintf(stderr, "\n## Results\n"); fprintf(stderr, "expected fwhm: %.7f\n", fwhm_e); fprintf(stderr, "observed fwhm: %.4f±%.4f\n", fwhm_o.n, fwhm_o.s); // t-test t = fabs(fwhm_e - fwhm_o.n)/fwhm_o.s; p = 1 - erf(t/sqrt(2)); fprintf(stderr, "\n## t-test\n"); fprintf(stderr, "t=%.3f\n", t); fprintf(stderr, "p=%.3f\n", p); /* Median comparison * * Compute the median of the sample by bootstrapping * it and comparing it with the QDF(1/2). */ fprintf(stderr, "\n\n# Median comparison\n"); double med_e = landau_qdf(0.5); uncert med_o = bootstrap_median(r, sample, samples, boots); // print the results fprintf(stderr, "\n## Results\n"); fprintf(stderr, "expected median: %.7f\n", med_e); fprintf(stderr, "observed median: %.4f±%.4f\n", med_o.n, med_o.s); // t-test t = fabs(med_e - med_o.n)/med_o.s; p = 1 - erf(t/sqrt(2)); fprintf(stderr, "\n## t-test\n"); fprintf(stderr, "t=%.3f\n", t); fprintf(stderr, "p=%.3f\n", p); /* Infinite moments test * * Apply the Trapani test for infinite moment * to the mean and variance. * * Use r=n^0.75 points in both cases and rescale * the variance by the ψ=2 moment. The mean is not * rescaled. */ fprintf(stderr, "\n\n# Infinite moments test\n"); double p_mean = trapani(r, 0.75, 0, 1, sample, samples); double p_var = trapani(r, 0.75, 1, 2, sample, samples); // print the results fprintf(stderr, "\n## Results\n"); fprintf(stderr, "mean: p=%.3f\n", p_mean); fprintf(stderr, "variance: p=%.3f\n", p_var); // clean up and exit gsl_rng_free(r); free(sample); return EXIT_SUCCESS; }