# Sample parameters estimation ## Sample parameters estimation Once the points are sampled, how to estimate their median, mode and FWHM? . . . - Binning data $\hence$ result depending on bin-width . . . - Alternative solutions ## Sample median $$ m = Q \left( \frac{1}{2} \right) $$ . . . - Sort points in ascending order . . . - Middle element if odd - Average of the two central elements if even ## Sample mode Most probable value . . . HSM - Iteratively identify the smallest interval containing half points - Once the sample is reduced to less than three points, take average ## Sample FWHM $$ \text{FWHM} = x_+ - x_- \with L(x_{\pm}) = \frac{L_{\text{max}}}{2} $$ . . . KDE - empirical PDF construction: $$ f_\varepsilon(x) = \frac{1}{N\varepsilon} \sum_{i = 1}^N G \left( \frac{x-x_i}{\varepsilon} \right) $$ The parameter $\varepsilon$ controls the strength of the smoothing ## Sample FWHM Silverman's rule of thumb: $$ f_\varepsilon(x) = \frac{1}{N\varepsilon} \sum_{i = 1}^N G \left( \frac{x-x_i}{\varepsilon} \right) \with \varepsilon = 0.88 \, S_N \left( \frac{d + 2}{4}N \right)^{-1/(d + 4)} $$ with: - $S_N$ is the sample standard deviation - $d$ is number of dimensions ($d = 1$) . . . \vspace{10pt} Numerical root finding (Brent) ## Sample FWHM ![](images/kde.pdf)