#include #include #include #include #include #include #include "common.h" /* Options for the program */ struct options { size_t nsig; size_t nnoise; int iter; int trained; double weights[3]; }; /* `classify(w, t, x)` classifies a single point * `x` using the weight vector `w` and cut `t`. * Returns 0 for noise and 1 for signal. */ int classify(gsl_vector *w, double cut, gsl_vector *x) { double proj; gsl_blas_ddot(w, x, &proj); return signbit(proj - cut); } /* Counts the misclassified data given the weights+cut * values and the expected outcome using the `classify` * function, defined above. */ int misclassified(double *weights, int expected, gsl_matrix *data) { int count = 0; double cut = weights[2]; gsl_vector w = gsl_vector_view_array(weights, 2).vector; for (size_t i = 0; i < data->size1; i++) { /* Get a vector view of the * current row in the data matrix. */ gsl_vector x = gsl_matrix_const_row(data, i).vector; if (classify(&w, cut, &x) != expected) count++; } return count; } int show_help(char **argv) { fprintf(stderr, "Usage: %s -[hisnw] WEIGHT [WEIGHT..] CUT\n", argv[0]); fprintf(stderr, " -h\t\tShow this message.\n"); fprintf(stderr, " -i N\t\tThe number of test iterations to run.\n"); fprintf(stderr, " -s N\t\tThe number of events in signal class.\n"); fprintf(stderr, " -n N\t\tThe number of events in noise class.\n"); fprintf(stderr, "\nRun tests classifying randomly generated data, " "using the given WEIGHTs and CUTs.\n"); return EXIT_FAILURE; } int main(int argc, char **argv) { /* Set default options */ struct options opts; opts.iter = 500; opts.nsig = 800; opts.nnoise = 1000; /* Process CLI arguments */ if (argc < 2) return show_help(argv); for (size_t i = 1; i < argc; i++) { if (!strcmp(argv[i], "-s")) opts.nsig = atol(argv[++i]); else if (!strcmp(argv[i], "-n")) opts.nnoise = atol(argv[++i]); else if (!strcmp(argv[i], "-i")) opts.iter = atoi(argv[++i]); else if (!strcmp(argv[i], "-h")) return show_help(argv); else { for (int j = 0; j < 3; j++) opts.weights[j] = atof(argv[i++]); } } // initialise RNG gsl_rng_env_setup(); gsl_rng *r = gsl_rng_alloc(gsl_rng_default); // initialise running stats gsl_rstat_workspace *false_pos = gsl_rstat_alloc(); gsl_rstat_workspace *false_neg = gsl_rstat_alloc(); /* Generate two classes of normally * distributed 2D points with different * paramters: signal and noise. */ struct par par_sig = { 0, 0, 0.3, 0.3, 0.5 }; struct par par_noise = { 4, 4, 1.0, 1.0, 0.4 }; /* Generate `iter` different samples, apply the * binary classification with the given weights * and measure purity and efficiency. */ for (int i = 0; i < opts.iter; i++) { sample_t *signal = generate_normal(r, opts.nsig, &par_sig); sample_t *noise = generate_normal(r, opts.nnoise, &par_noise); /* Count false positive/negatives and add them to * the running stats workspaces to calculate mean/stddev. */ gsl_rstat_add(misclassified(opts.weights, 0, noise->data), false_neg); gsl_rstat_add(misclassified(opts.weights, 1, signal->data), false_pos); // free memory sample_t_free(signal); sample_t_free(noise); } puts("# results\n"); puts("## false negatives"); printf( "- total noise: %ld\n" "- mean: %.3g, stddev: %.2g\n" "- min: %g, max: %g\n", opts.nnoise, gsl_rstat_mean(false_neg), gsl_rstat_sd(false_neg), gsl_rstat_min(false_neg), gsl_rstat_max(false_neg)); puts("\n## false positives"); printf( "- total signal: %ld\n" "- mean: %.3g, stddev: %.2g\n" "- min: %g, max: %g\n", opts.nsig, gsl_rstat_mean(false_pos), gsl_rstat_sd(false_pos), gsl_rstat_min(false_pos), gsl_rstat_max(false_pos)); puts("\n## averages"); printf("- purity:\t%.3e\n", 1 - gsl_rstat_mean(false_neg)/opts.nsig); printf("- efficiency:\t%.3e\n", 1 - gsl_rstat_mean(false_pos)/opts.nsig); // free memory gsl_rng_free(r); gsl_rstat_free(false_neg); gsl_rstat_free(false_pos); return EXIT_SUCCESS; }