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ABSTRACT  

For the first time, we propose the called beta Moyal distribution that generalizes the Moyal distribution, and study its 

properties. We derive expansions for the cumulative distribution function as power series of the Moyal cumulative 

distribution. We derive expansions for its moments, generating function, mean deviations, density function of the 

order statistics and their moments. We discuss maximum likelihood estimation of the model parameters. We illustrate 

the superiority of the new distribution as compared to the beta normal, skew-normal and Moyal distributions by means 

of three real data sets. 

 

Keywords: Entropy; Expected information; Maximum likelihood estimation; Moment; Moyal distribution; Order 

Statistic. 

 
1. INTRODUCTION 

One major benefit of the class of beta generalized distributions proposed by Eugene  et al. (2002) is its ability of 

fitting skewed data that can not be properly fitted by existing distributions. Starting from a parent cumulative 

distribution function (cdf) )(xG , this class is defined by  
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 where a  and b  are additional positive parameters, )()/()(=),( bababaB   is the beta function, )(a  

is the gamma function, ),()/,(=),( baBbaBbaI yy  is the incomplete beta function ratio and 
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0
)(1=),(    is the incomplete beta function. This class of generalized distributions has been 

receiving considerable attention over the last years in particular after the work of Jones (2004). 

Eugene  et al. (2002), Nadarajah and Kotz (2004), Nadarajah and Gupta (2004), Nadarajah and Kotz (2005), Lee  et 

al. (2007) and Akinsete  et al. (2008) defined the beta normal, beta Gumbel, beta Fréchet, beta exponential, beta 

Weibull and beta Pareto distributions by taking )(xG  to be the cdf of the normal, Gumbel, Fréchet, exponential, 

Weibull and Pareto distributions, respectively. More recently, Pescim  et al. (2010) and Barreto-Souza  et al. (2010) 

studied the beta generalized half-normal and beta generalized exponential distributions, respectively. 

The probability density function (pdf) corresponding to (1) is  
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 where dxxdGxg )/(=)(  is the parent density function. The density )(xf  will be most tractable when both 

functions )(xG  and )(xg  have simple analytic expressions. Except for some special choices of these functions, 

)(xf  will be difficult to deal with some generality. 

In this note, we introduce a four parameter model, called the beta Moyal (BMo) distribution, to extend the Moyal 

distribution. The BMo distribution is convenient for modeling comfortable upside-down bathtub-shaped failure rates 

and as a competitive model to the Moyal, half-normal, beta normal, skew normal and Gumbel distributions. 

The article is organized as follows. In Section 2, we define the BMo distribution, present some special sub-models and 

provide expansions for its distribution and density functions. Section 3 gives general expansions for the moments, 

moment generating function (mgf), mean deviations and Rényi entropy. In Section 4, we derive expansions for the 

moments of order statistics. Maximum likelihood estimation and inference issues are addressed in Section 5. Section 6 
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illustrates the importance of the BMo distribution by means of three real data sets. Finally, concluding remarks are 

given in Section 7. 

 
2.  BETA MOYAL DISTRIBUTION 
The Moyal distribution (Moyal, 1955) was proposed as an approximation to the Landau distribution. It was also shown 

that it remains valid taking into account quantum resonance effects and details of atomic structure of the absorber. The 

Moyal distribution is a universal form for the energy loss by ionization for a fast charged particle and the number of 

ion pairs produced in this process. Let X  be a random variable having the Moyal standard density function given by  
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A location parameter   and a scale factor   can be introduced to define the random variable  XZ =  

having a Moyal distribution, say Mo ),(  , given by  
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 where  <,< x  and 0> . The cumulative function corresponding to (4) depends on the incomplete 

gamma function dttx t
x
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 The cumulants of the standard Moyal distribution (3) are  
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 where 0.57721  is Euler's constant, 
)(n  denotes polygamma functions and )(  is the Riemann's zeta 

function defined by  
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 The moments can be easily obtained from these cumulants. Those of lower order are 
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the distribution (4),  )(=)( XEZE , )(=)( 2 XVarZVar   and, more generally, the central moments of 

Z  ( Zn, ) are easily obtained from the central moments of X  ( Xn, ) by Xn

n

Zn ,, =   for 2n . 

The characteristic function of (3) is  
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 where 1=i  . The gamma function )(  with complex argument is defined when the real part of the argument 

is positive, which is indeed true in this case. 

The Moyal distribution can be defined in a finite interval. In fact, the transformation )(tan= YX  gives the density 

function of Y  as  
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 This density function has a maximum of about 0.91  and it is widely used to generate Moyal variates. 
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Now, we introduce the four parameter BMo distribution by taking )(xG  in (1) to be the cdf (5) of the Moyal 

distribution. The BMo cumulative function is given by  
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 Inserting (4) and (5) into (2) gives the BMo density function  
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where  <<   is the location parameter, 0>  is the scale parameter and 0>a  and 0>b  are shape 

parameters. For 1== ba , it reduces to the Moyal distribution. For 0=  and 1= , we obtain the standard 

BMo density function given by  
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Plots of the density function (7) for selected parameter values are given in Figure 1. These plots show great flexibility 

of the new distribution for different values of the shape parameters a  and b , including the special case of the 

standard Moyal distribution. The density function (7) allows for great flexibility and then it can be very useful in many 

more practical situations, i.e. the BMo distribution can be symmetric and asymmetric. 

 
  (a)                                                        (b)  
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     (c)                                                     (d) 

       

Figure  1: Plots of the density function (7) for some parameter values. (a) 0=  and 1= . (b) 0=  

and 1= . (c) 1=b  and 1= . (d) 0=  and 1=a . 

  

  

If X  is a random variable with density function (7), we write :X BMo ),,,( ba . The BMo distribution is 

easily simulated from )(xF  in (6) as follows: if V  has a beta distribution with parameters a  and b , then the 

solution of the nonlinear equation  
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error function. To simulate data from this nonlinear equation, we can use the programming language Ox through the 

SolveNLE subroutine (see Doornik, 2007). 

We provide two simple formulae for the cdf of the BMo distribution depending if the parameter 0>b  is 

real non-integer or integer. First, if 1|<| z  and 0>b  is real non-integer, we have the series representation  
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 For 0>b  real non-integer, by the representation (9), the standard cumulative function (6) (for 0=  and 1=
) can be expanded as  
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 If 0>a  is an integer, (10) gives the cdf of the BMo distribution in terms of a power series of the Moyal cumulative 

function. Otherwise, if 0>a  is real non-integer, inserting expansion (9) in (10) gives  
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 For both a  and b  real non-integers, equation (11) reveals that the BMo cumulative distribution can be expressed 

as an infinite power series of the incomplete gamma function. 

By application of the binomial expansion in (6), when 0>b  is an integer, we obtain  
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 For 0>a  integer, applying the binomial expansion in (12), yields  
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 For 0>a  real non-integer, expanding (12) as in (9), we have  
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 The standard Moyal cumulative function can be obtained from equation (12) when 1== ba . Equations (10)-(14) 

are the main expansions for the cdf of the BMo distribution. They (and other expansions in the paper) can be evaluated 

in symbolic computation software such as Mathematica and Maple}.These symbolic software have currently the 

ability to deal with analytic expressions of formidable size and complexity. 

Alternatively to (8), an expansion for the standard BMo density function for b  real non-integer follows by 

differentiating (10) and using the series representation (9)  
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 whose coefficients ),( bawk  are  
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Equation (15) is the basic expansion for the standard BMo density function. 

 
3.  PROPERTIES 
We hardly need to emphasize the necessity and importance of moments and generating function in any statistical 

analysis especially in applied work. Some of the most important features and characteristics of a distribution can be 

studied through moments (e.g., tendency, dispersion, skewness and kurtosis). 

 

 

 

 

 



IJRRAS 10 (2) ● February 2012 Cordeiro & al. ● The Beta Moyal Distribution 

 

 
 

176 
 

3.1  Moments 
 

Theorem 1:  If ,0,1),( baBMoX : , the s th moment of X  is given by  
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 where all quantities are defined in the following proof. 
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 Using the binomial expansion in the last equation, we can obtain  
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 Hence, the s th moment of the standard BMo distribution can be expressed as  
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The skewness and kurtosis measures can be determined calculated from the ordinary moments using well-known 

relationships. Plots of the skewness and kurtosis for some choices of the parameter b  as function of a , and for some 

choices of the parameter a  as function of b , for 0=  and 1= , are shown in Figures 1 and 2, respectively. 

 
 (a) (b) 

    

Figure  2: Skewness and kurtosis of the standard BMo distribution as a function of a  for selected values of b . 

 
 (a)                                                              (b) 

    

Figure  3: Skewness and kurtosis of the standard BMo distribution as a function of b  for selected values of a . 

 

 

 

  



IJRRAS 10 (2) ● February 2012 Cordeiro & al. ● The Beta Moyal Distribution 

 

 
 

178 
 

 3.2  Generating Function 
 

Theorem 2:  If ,0,1),( baBMoX : , the mgf of X  reduces to  
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 where ),( bawk  and kmc ,  are defined in Sections 2 and 3.1, respectively. 

 Proof: 
The mgf of the standard BMo distribution is  
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 Substituting /2e= xu 
, we have  
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Following similar steps of Theorem 1, )(tM  takes the form  
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 By the definition of the gamma function, we obtain the stated result. 

 

3.3  Means Deviations 
The amount of scatter in a population is evidently measured to some extent by the totality of deviations from the mean 

and median. The mean deviations of X  about the mean and the median are defined by  
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 The transformation /2e= xu 
 leads to  
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 Following similar steps from Theorem 1, we can rewrite )(qT  as  
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 Calculating the integral in the last equation by Maple, we obtain  
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 The measures )(1 X  and )(2 X  are immediately determined from (20). 

An application of the mean deviations is to obtain the Lorenz and Bonferroni curves, which are important in several 

fields such as economics, reliability, demography, insurance and medicine. For a given probability  , they are 

defined by 
'qTL 1)/(=)(   and ))/((=)( 1

'qTB  , respectively, where )(=)(= 1  FQq  is 

determined from the beta quantile function with parameters a  and b  (say )(, baQ ) by 
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. 

In economics, if )(= qF  is the proportion of units whose income is lower than or equal to q , )(L  gives the 

proportion of total income volume accumulated by the set of units with an income lower than or equal to q . The 

Lorenz curve is increasing and convex and given the mean income, the density function of X  can be obtained from 

the curvature of )(L . In a similar manner, the Bonferroni curve )(B  gives the ratio between the mean income of 

this group and the mean income of the population. In summary, )(L  yields fractions of the total income, while the 

values of )(B  refer to relative income levels. 

 

3.4  Rényi Entropy 
The entropy of a random variable is a measure of variation of the uncertainty. Entropy has been used in various 

situations in science and engineering, and numerous measures of entropy have been studied and compared in 

literature. The Rényi entropy is defined by  
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 Using the series expansion (9) in (??), we obtain  
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 Using (9) again and then applying the binomial expansion yields  
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 Setting /2e= xu 
, )(I  reduces to  
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 Following similar developments in Theorem 1, we have  
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 where 
1

,
1

rmc  is defined in Section 3.1. The integral in equation (22) can be easily calculated from the result given by 
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Prudnikov  et al. (1986, Vol.1, Section 2.3.3, integral 1). Hence,  
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 Finally, the Rényi entropy can be expressed as  
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4.  EXPANSIONS FOR THE ORDER STATISTICS 
Moments of order statistics play an important role in quality control testing and reliability, where a practitioner needs 

to predict the failure of future items based on the times of a few early failures. These predictors are often based on 

moments of order statistics. We now derive an explicit expression for the density of the i th order statistic niX : , say 

)(: xf ni , in a random sample of size n  from the BMo distribution. It is well-known that  
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 Substituting (6) and (7) in the last equation, the density )(: xf ni  for 0>b  real non-integer becomes  
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The density function of the BMo order statistics is then an infinite linear combination of BMo density functions. 

Hence, the ordinary and central moments of the order statistics can be calculated directly from those quantities of the 

proposed distribution given in Section 3.1. For 0>b  integer, expansion (26) holds but the sum in j  stops at 

1)1)((  ikb . Analogously, the generating function of the standard BMo order statistics can be determined from 
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The constants ki ,  are easily obtained given kni ,,  and a sequence of indices 11 ,, kimm  . The sums in (27) 

extend over all )( ki  -tuples ( 11 ,,, kimmk  ) of non-negative integers and can be implemented in a computer 

language (such as Mathematica) using just a few lines of code. If 0>b  is an integer, equation (27) holds but the 

indices 11 ,, kimm   vary from zero to 1b . Expansion (26) is much simpler to be calculated numerically in 

applications and the corresponding CPU times are usually smaller than those from (27). 

The s th moment of niX :  for 0>b  real non-integer comes from (26)  
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 where ,0,1),)((,, bjkiaBMoX kji :  and the constants kjid ,,  were defined before. If b  is an integer, the 

sum in j  stops at 1b . 

From equation (27), we can obtain an alternative expression for the moments of the order statistics valid for 0>b  

real non-integer  
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: . If 0>b is an integer, the indices 11 ,, kimm   stop at 

1b . 

We therefore offer two alternative expressions (28) and (29) for the moments of the BMo order statistics, which are the 

main results of this section. 

From (28) and (29), we can easily derive expansions for the L-moments (Hosking, 1990) of the BMo distribution as 

linear functions of expected order statistics given by  
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5.  ESTIMATION AND INFERENCE 

The parameters of the BMo distribution are estimated by the method of maximum likelihood. If X  has the BMo 

distribution with vector of parameters 
),,,(=  ba , the log-likelihood for the model parameters from a single 

observation x  of X  is given by  
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 where )/(= xz  and (.)  is the digamma function. 

For a random sample 
),,(= 1 nxxx   of size n  from X , the total log-likelihood is 
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total score function is 
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)(iU  has the previous form for ni ,1,=  . The maximum 

likelihood estimate (MLE)   of   is the solution of the nonlinear system of equations 0=nU . 

For interval estimation and tests of hypotheses on the parameters in  , we require the 44  unit expected 

information matrix  

 ,

...

..

.
=)(=

,

,,

,,,

,,,






































bbbb

aabaaa

KK  

whose elements are given in Appendix A. 

Under conditions that are fulfilled for parameters in the interior of the parameter space, the asymptotic distribution of 
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used to construct approximate confidence intervals for the parameters and for the hazard rate and survival functions. 

An asymptotic confidence interval with significance level   for each parameter r  is given by  
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ˆ  is the r th diagonal element of 
11 )(  Kn  estimated at  , for ,41,= r , and /2z  is the 

quantile /21   of the standard normal distribution. 

The likelihood ratio (LR) statistic is useful for testing goodness-of-fit of the BMo distribution and for comparing this 

distribution with some of its special sub-models. We can compute the maximum values of the unrestricted and 

restricted log-likelihoods to construct LR statistics for testing some sub-models of the BMo distribution. For example, 

we may use the LR statistic to check if the fit using the BMo distribution is statistically ``superior'' to a fit using the 

Moyal distribution for a given data set. In any case, considering the partition 
 ),(= 21  , tests of hypotheses 
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, where   and   are the MLEs of   under AH  and 0H , respectively. Under the null hypothesis 0H , 

2

q

d

w  , where q  is the dimension of the vector 1  of interest. The LR test rejects 0H  if >w , where   

denotes the upper 100 % point of the 
2

q  distribution. From the score vector and the information matrix given 

before, we can also construct score and Wald statistics that are asymptotically equivalent to LR statistics. 
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6.  APPLICATIONS 
In this section, we use several real data sets to compare the fits of the BMo distribution with those of the beta normal, 

skew-normal and Moyal distributions. In each case, the parameters are estimated by maximum likelihood as described 

in Section 5 using the subroutine NLMixed in SAS. First, we describe the data sets. Then, we provide the MLEs (and 

the corresponding standard errors in parentheses) of the model parameters and the values of the AIC (Akaike 

Information Criterion), CAIC (Consistent Akaike Information Criterion) and BIC (Bayesian Information Criterion) 

statistics. The lower the values of these statistics, the better the fit. Next, we perform the LR tests (Section 5). Finally, 

the histograms of these data sets are provided for a visual comparison of the fitted density functions. 

 

(i) The wheaton river data 

As a first example, we consider the data set (Akinsete  et al., 2008) on the exceedances of flood peaks (in m3/s) of the 

Wheaton River near Carcross in Yukon Territory, Canada. The data consist of 72 exceedances for the years 

1958-1984, rounded to one decimal place. These data were analyzed by Choulakian and Stephens (2001).  

 

(ii) Tubercle bacilli data 

The data, originally reported by Bjerkedal (1960), represent the survival times of guinea pigs injected with different 

doses of tubercle bacilli. These data were analyzed by Kundu  et al. (2008) and Leiva  et al. (2009). It is known that 

guinea pigs have high susceptibility to human tuberculosis and that they were used in this study. Here, we are 

primarily concerned with the animals in the same cage that were under the same regimen. The regimen number is the 

common logarithm of the number of bacillary units in 0.5 ml of challenge solution, that is, regimen 6.6 corresponding 

to 1064.0  bacillary units per 0.5 ml 6.6)=106)(4.0log(  .  

 

(iii) Air pollution data 

To obtain the level of air pollution and its associated adverse effects on humans in Santiago, Chile, the National 

Commission of Environment (CONAMA) of the government of Chile collects data on sulfur dioxide )( 2SO  

concentrations in the air. The data correspond to the hourly 2SO  concentrations (in ppb, American parts per billion, 

ppm 1000 ) observed at a monitoring station located in Santiago city. These data were analyzed by Balakrishnan  

et al. (2009) and Leiva  et al. (2009). 

  

Table  1: Descriptive statistics.  

   

  Data   Mean   Median   Mode   SD  Variance  Skewness  Kurtosis Min. Max. 

 Wheaton 

river  

 12.2  9.5   1.7   12.3  151.2   1.5  3.2  0.1  64 

 Tubercle 

bacilli  

 99.8   70.0   60.0   81.1  6580.1   1.8  2.9  12  376 

 Air 

pollution  

 2.9   3.0   2.0   1.9  3.5   4.6  40.7  1.0  25 

  

Table 0 gives a descriptive summary of each sample. The wheaton river, tubercle bacilli and air pollution data have 

positive skewness and kurtosis, larger values of these sample moments are shown in the tubercle bacilli data. 

We now compute the MLEs and the AIC, BIC and CAIC information criteria for the fitted models in each data set. The 

classical estimates of   and   for the normal distribution are taken as starting values for the fits of the BMo, 

Moyal, beta normal and skew-normal distributions. The results are reported in Table 1. In any case, since the values of 

the three statistics are smaller for the BMo distribution compared to those values of the Moyal, beta normal and 

skew-normal distributions, we conclude that the new distribution is a very competitive model for data analysis.    
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Table  2: MLEs and information criteria. 

  
   Wheaton 

river  
 a    b           AIC   CAIC    BIC   

  BMo   0.2693   0.2612   5.5967   2.0295   257.5   258.1   266.6  

  (0.0370)  (0.0479)  (0.4095)  (0.2230)       

 Moyal   1   1   5.4092   4.8127   271.6   271.8   276.1  

  -  -  (0.8569)  (0.5126)      

 Beta normal   141.14   134.0   6.9376   161.35  572.6   573.2   581.7  

  (0.4302)  (0.3954)  (1.8309)  (13.4563)       

                      

 Skew-normal  -   -0.0026   12.2279   12.2125   570.7   571.0   577.5  

  -  (4.3820)  (2.7227)  (1.0214)       

  Tubercle 

bacilli  

 a    b           AIC   CAIC    BIC   

  BMo   0.4841   0.4568   61.0070   17.7372   787.9   788.5   797.0  

  (0.0953)  (0.0928)  (7.1896)  (2.3706)       

 Moyal   1   1   59.8823   28.0211   790.9   791.1   795.4  

  -  -  (4.9499)  (2.8541)      

 Beta normal   1.7519   0.2313   16.0616   44.4357  827.8   828.4   836.9  

  (0.7558)  (0.0303)  (17.3197)  (2.3460)       

                      

 Skew-normal  -   19.9240   15.4379   116.66   800.5  800.9   807.3  

  -  (13.4867)  (6.6814)  (10.8566)       

  Air pollution   a    b           AIC   CAIC    BIC   

  BMo   0.2488   0.9009   3.4512   0.7542   2858.3   2858.4   2877.3  

  (0.0144)  (0.1164)  (0.2455)  (0.0758)       

 Moyal   1   1   2.0691   0.6708   2872.7   2872.8   2882.2  

  -  -  (0.0350)  (0.0188)      

 Beta normal   3.2438   1.0887   0.5395   2.9670  3433.0   3433.1   3452.0  

  (0.3952)  (0.0498)  (0.3064)  (0.0648)       

                      

 Skew-normal  -   7.0336   1.0747   2.6400   3081.0  3081.1   3095.3  

  -  (1.0518)  (0.0593)  (0.0761)       

   

A formal test for the third skewness parameter in the BMo distribution can be based on the LR statistics (Section 5). 

Applying this test to the three data sets, the results are shown in Table 2. For the three data sets, we reject the null 

hypothesis 1==:0 baH  in favor of the BMo distribution. This fact provides an evidence of the importance for the 

three skewness parameters when modeling real data. 

  

Table  3: LR tests. 

  
   Wheaton river   Hypotheses   Statistic w    p -value  

 BMo vs Moyal   1==:0 baH  vs 

falseisHH 01 :   

 18.1   0.0001  

 Tubercle bacilli   Hypotheses   Statistic w    p -value  

 BMo vs Moyal   1==:0 baH  vs 

falseisHH 01 :   

 7.0   0.0302  

 Air pollution   Hypotheses   Statistic w    p -value  

 BMo vs Moyal   1==:0 baH  vs 

falseisHH 01 :   

 20.4   0.00004  
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The histogram of the data and the plots of the fitted BMo, Moyal, beta normal and skew-normal distributions are given 

in Figures 3, 4 and 5. These plots show some evidence that the BMo distribution seems superior to the other 

distributions in terms of model fit. 

 

  
Figure  4: Estimated densities of the BMo, Moyal, beta normal and skew-normal models for the wheaton river data. 

  

 
Figure  5: Estimated densities of the BMo, Moyal, beta normal and skew-normal models for the tubercle bacilli data. 
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Figure  6: Estimated densities of the BMo, Moyal, beta normal and skew-normal models for the air pollution data. 

 

7.  CONCLUSIONS 
In this article, we propose a new model called the beta Moyal (BMo) distribution to extend the Moyal distribution in 

the analysis of skew data with real support. An obvious reason for generalizing a ``standard distribution'' is because the 

generalized form provides greater flexibility in modeling real data. We provide a mathematical treatment of the new 

distribution including expansions for its distribution and density functions. We derive expansions for the moments, 

generating function, mean deviations and moments of order statistics. The estimation of parameters is performed by 

the method of maximum likelihood and the information matrix is derived. We adopt the likelihood ratio (LR) statistic 

to compare the new model with its baseline model. Three applications of the BMo distribution to real data show that 

the new distribution can be used quite effectively to provide better fits than the beta normal, Moyal and skew-normal 

distributions. 

 

Appendix A 

The elements of the 44  unit expected information matrix are given by  

  







 0,01,0,1,1,0,30,00,0,2,0,2,0,00,0,2,0,1,2, (2))log(1
21)(2

2

11
= T

a
TT


   

 



 0,01,0,1,1,2,1,01,0,1,1,0,1,01,0,3,1,0,0,01,0,2,1,0,

2

1

2

1
4(4)log TTTT


 

0,01,0,2,2,2,0,11,0,3,1,1,0,01,0,3,1,1,0,01,0,5,1,2,0,01,0,3,1,2, 2424 TTTTT   











 0,00,1,1,1,1,0,02,0,2,2,1,0,01,0,4,2,2,

1
1)(2

2
8 TbTT


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  ,
2

2
22

4

1
0,00,2,2,2,2,20,00,1,3,1,2,0,00,1,1,1,2,2 





 TTT


 

  











 0,01,0,3,1,1,0,01,0,1,1,1,30,00,0,2,0,1,0,00,0,2,0,0,22,

2

3

4

111)(1

2

1
= TT

a
TT


   

  




 0,02,0,2,2,0,0,02,0,4,2,1,0,02,0,2,2,1,0,01,0,1,1,0,0,01,0,3,1,0, 24
2

1
3 TTTTT


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























 0,02,0,2,3,0,0,01,0,8,2,0,0,01,0,4,2,0,30,00,0,2,0,0,2,

2

221
1
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2

1)(1
= TTT

a
T


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 ,
22

4

21)(
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









 TT
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  ).()(=),()(=,2
2

1
= ''

,

''

,0,01,0,4,2,0,0,01,0,2,2,0,2, babbaaTT bbaaa  


 

 

Here, we assume that a random variable V  has a beta distribution with parameters a  and b  and define the 

expected value  

          




 
mkji

pnmlkji VerfVerflVerfVVET
21211

,,,,,, )(12log)(1exp)(11=  

           .)(12log)(12exp)(1log
21211





 
pn

VerfVerfVerf  

These expected values can be determined numerically using Maple and Mathematica for any a and b. 

For example, for a = 2:5 and b = 3, we easily calculate all T’s in the information matrix:  

T0;0;2;0;1;0;0 = 0:4598979; T0;0;2;0;2;0;0 = 0:1271101; T0;1;1;1;1;0;0 = ¡0:4559037; T0;1;1;1;2;0;0 = 1:800166; 
T0;1;3;1;2;0;0 = 0:1077819 ; T0;2;2;2;2;0;0 = 0:9190356; T0;0;2;0;0;0;0 = 0:4948074; T0;1;1;1;0;0;0 = 0:6847316; 
T0;2;2;2;1;0;0 = 0:291509; T0;1;3;1;1;0;0 = ¡0:08361248; T0;1;0;1;0;0;0 = 1:745719; T0;1;2;1;0;0;0 = 0:4406842; 
T0;2;0;2;0;0;0 = 3:955121; T1;0;1;1;0;0;0 = 0:9004557; T1;0;1;1;0;1;0 =; ¡0:8180274; T1;0;1;1;2;0;0 = 0:3652951; 
T1;0;1;1;1;0;0 = ¡0:2425763; T1;0;2;1;0;0;0 = 0:39603; T1;0;2;2;2;0;0 =; 0:04201742; T1;0;2;2;0;0;0 = 0:01161524; 
T1;0;3;1;0;1;0 = ¡0:2319999; T1;0;3;1;2;0;0 = 0:2246422; T1;0;3;1;1;0;0 = ¡0:2028589; T1;0;3;1;1;0;1 = ¡0:1049516; 
T1;0;3;1;0;0;0 = 0:7749216; T1;0;5;1;2;0;0 = 0:004927196; T1;0;4;2;2;0;0 = 0:003980552; T1;0;4;2;0;0;0 = 0:09122807; 
T2;0;2;2;1;0;0 = 1:632044; T2;0;2;2;0;0;0 = 2:917779; T2;0;2;3;0;0;0 = 2:567143; T2;0;4;2;1;0;0 = ¡0:5019668;  
T2;0;4;3;0;0;0 = 2:570722; T1;0;8;2;0;0;0 = 0:08920794. 
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