# Landau distribution ## Landau PDF :::: {.columns} ::: {.column width=50% align=center} $$ L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty} dt \, e^{-t \ln(t) -xt} \sin (\pi t) $$ . . . \vspace{30pt} \centering No closed form for \textcolor{cyclamen}{ANYTHING} ::: ::: {.column width=50%} ![](images/landau-pdf.pdf) ::: :::: ## Landau median The median of a PDF is defined as: $$ m = Q \left( \frac{1}{2} \right) $$ . . . - CDF computed by numerical integration - QDF computed by numerical root-finding (Brent) \setbeamercovered{} \begin{center} \begin{tikzpicture}[remember picture] \node at (0,0) (here) {$m_L\ex = 1.3557804...$}; \pause \node [opacity=0.5, xscale=0.35, yscale=0.25 ] at (here) {\includegraphics{images/high.png}}; \end{tikzpicture} \end{center} \setbeamercovered{transparent} ## Landau mode - Maximum $\hence \partial_x L(\mu) = 0$ . . . - Computed by numerical minimization (Brent) \setbeamercovered{} \begin{center} \begin{tikzpicture}[remember picture] \node at (0,0) (here) {$\mu_L\ex = − 0.22278...$}; \pause \node [opacity=0.5, xscale=0.32, yscale=0.25 ] at (here) {\includegraphics{images/high.png}}; \end{tikzpicture} \end{center} \setbeamercovered{transparent} ## Landau FWHM We need to compute the maximum: $$ L_{\text{max}} = L(\mu_L) $$ $$ \text{FWHM} = w = x_+ - x_- \with L(x_{\pm}) = \frac{L_{\text{max}}}{2} $$ . . . - Computed by numerical root finding (Brent) \setbeamercovered{} \begin{center} \begin{tikzpicture}[remember picture] \node at (0,0) (here) {$w_L\ex = 4.018645...$}; \pause \node [opacity=0.5, xscale=0.32, yscale=0.25 ] at (here) {\includegraphics{images/high.png}}; \end{tikzpicture} \end{center} \setbeamercovered{transparent}