#include "fisher.h" #include #include #include /* Builds the covariance matrix Σ * from the standard parameters (σ, ρ) * of a bivariate gaussian. */ gsl_matrix* normal_cov(struct par *p) { double var_x = pow(p->sigma_x, 2); double var_y = pow(p->sigma_y, 2); double cov_xy = p->rho * p->sigma_x * p->sigma_y; gsl_matrix *cov = gsl_matrix_alloc(2, 2); gsl_matrix_set(cov, 0, 0, var_x); gsl_matrix_set(cov, 1, 1, var_y); gsl_matrix_set(cov, 0, 1, cov_xy); gsl_matrix_set(cov, 1, 0, cov_xy); return cov; } /* Builds the mean vector of * a bivariate gaussian. */ gsl_vector* normal_mean(struct par *p) { gsl_vector *mu = gsl_vector_alloc(2); gsl_vector_set(mu, 0, p->x0); gsl_vector_set(mu, 1, p->y0); return mu; } /* `fisher_proj(c1, c2)` computes the optimal * projection map, which maximises the separation * between the two classes. * The projection vector w is given by * * w = Sw⁻¹ (μ₂ - μ₁) * * where Sw = Σ₁ + Σ₂ is the so-called within-class * covariance matrix. */ gsl_vector* fisher_proj(sample_t *c1, sample_t *c2) { /* Construct the covariances of each class... */ gsl_matrix *cov1 = normal_cov(&c1->p); gsl_matrix *cov2 = normal_cov(&c2->p); /* and the mean values */ gsl_vector *mu1 = normal_mean(&c1->p); gsl_vector *mu2 = normal_mean(&c2->p); /* Compute the inverse of the within-class * covariance Sw⁻¹. * Note: by definition Σ is symmetrical and * positive-definite, so Cholesky is appropriate. */ gsl_matrix_add(cov1, cov2); gsl_linalg_cholesky_decomp(cov1); gsl_linalg_cholesky_invert(cov1); /* Compute the difference of the means. */ gsl_vector *diff = gsl_vector_alloc(2); gsl_vector_memcpy(diff, mu2); gsl_vector_sub(diff, mu1); /* Finally multiply diff by Sw. * This uses the rather low-level CBLAS * functions gsl_blas_dgemv: * * ___ double ___ 1 ___ nothing * / / / * dgemv computes y := α op(A)x + βy * \ \__matrix-vector \____ 0 * \__ A is symmetric */ gsl_vector *w = gsl_vector_alloc(2); gsl_blas_dgemv( CblasNoTrans, // do nothing on A 1, // α = 1 cov1, // matrix A diff, // vector x 0, // β = 0 w); // vector y /* Normalise the weights and force * positiveness for easier * comparison with other methods. */ double norm = gsl_blas_dnrm2(w); if (gsl_vector_isneg(w)) norm = -norm; gsl_vector_scale(w, 1/norm); // free memory gsl_matrix_free(cov1); gsl_matrix_free(cov2); gsl_vector_free(mu1); gsl_vector_free(mu2); gsl_vector_free(diff); return w; } /* `fisher_cut(ratio, w, c1, c2)` computes * the threshold (cut), on the line given by * `w`, to discriminates the classes `c1`, `c2`; * with `ratio` being the ratio of their prior * probabilities. * * The cut is fixed by the condition of * conditional probability being the * same for each class: * * P(c₁|x) p(x|c₁)⋅p(c₁) * ------- = --------------- = 1; * P(c₂|x) p(x|c₁)⋅p(c₂) * * where p(x|c) is the probability for point x * along the fisher projection line. If the classes * are bivariate gaussian then p(x|c) is simply * given by a normal distribution: * * Φ(μ=(w,μ), σ=(w,Σw)) * * The solution is then * * t = (b/a) + √((b/a)² - c/a); * * where * * 1. a = S₁² - S₂² * 2. b = M₂S₁² - M₁S₂² * 3. c = M₂²S₁² - M₁²S₂² - 2S₁²S₂² log(α) * 4. α = p(c₁)/p(c₂) * */ double fisher_cut( double ratio, gsl_vector *w, sample_t *c1, sample_t *c2) { /* Create a temporary vector variable */ gsl_vector *vtemp = gsl_vector_alloc(w->size); /* Construct the covariances of each class... */ gsl_matrix *cov1 = normal_cov(&c1->p); gsl_matrix *cov2 = normal_cov(&c2->p); /* and the mean values */ gsl_vector *mu1 = normal_mean(&c1->p); gsl_vector *mu2 = normal_mean(&c2->p); /* Project the distribution onto the * w line to get a 1D gaussian */ /* Mean: mi = (w, μi) */ double m1; gsl_blas_ddot(w, mu1, &m1); double m2; gsl_blas_ddot(w, mu2, &m2); /* Variance: vari = (w, covi⋅w) * * vtemp = covi⋅w * vari = w⋅vtemp */ gsl_blas_dgemv(CblasNoTrans, 1, cov1, w, 0, vtemp); double var1; gsl_blas_ddot(w, vtemp, &var1); gsl_blas_dgemv(CblasNoTrans, 1, cov2, w, 0, vtemp); double var2; gsl_blas_ddot(w, vtemp, &var2); /* Solve the P(c₁|x) = P(c₂|x) equation: * * ax² - 2bx + c = 0 * * with a,b,c given as above. * */ double a = var1 - var2; double b = m2*var1 + m1*var2; double c = m2*m2*var1 - m1*m1*var2 + 2*var1*var2 * log(ratio); // free memory gsl_vector_free(mu1); gsl_vector_free(mu2); gsl_vector_free(vtemp); gsl_matrix_free(cov1); gsl_matrix_free(cov2); return (b/a) + sqrt(pow(b/a, 2) - c/a); }