# Moyal distribution ## Moyal PDF Standard form: $$ M(z) = \frac{1}{\sqrt{2 \pi}} \exp \left[ - \frac{1}{2} \left( z + e^{-z} \right) \right] $$ . . . More generally: - location parameter $\mu$ - scale parameter $\sigma$ $$ z = \frac{x - \mu}{\sigma} \thus M(x) = \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[ - \frac{1}{2} \left( \frac{x - \mu}{\sigma} + e^{-\frac{x - \mu}{\sigma}} \right) \right] $$ ## Moyal CDF The CDF $F_M(x)$ can be derived by direct integration: $$ F_M(x) = \int\limits_{- \infty}^x dy \, M(y) = \frac{1}{\sqrt{2 \pi}} \int\limits_{- \infty}^x dy \, e^{- \frac{y}{2}} e^{- \frac{1}{2} e^{-y}} $$ . . . With the change of variable $z = e^{-\frac{y}{2}}/\sqrt{2}$: $$ F_M(x) = \frac{-2 \sqrt{2}}{\sqrt{2 \pi}} \int\limits_{+ \infty}^{f(x)} dz \, e^{- z^2} \with f(x) = \frac{e^{- \frac{x}{2}}}{\sqrt{2}} $$ ## Moyal CDF Remembering the error function $$ \text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x dy \, e^{-y^2}, $$ one finally gets: $$ F_M(x) = 1 - \text{erf} \left( \frac{e^{- \frac{x}{2}}}{\sqrt{2}} \right) $$ ## Moyal QDF The quantile (CDF\textsuperscript{-1}) is found solving: $$ y = 1 - \text{erf} \left( \frac{e^{- \frac{x}{2}}}{\sqrt{2}} \right) $$ hence: $$ Q_M(x) = -2 \ln \left[ \sqrt{2} \, \text{erf}^{-1} (1 - F_M(x)) \right] $$ ## Moyal median Defined by $\text{CDF}(m) = 1/2$, or $m=\text{QDF}(1/2)$. \begin{align*} M(z) &\thus m_M = -2 \ln \left[ \sqrt{2} \, \text{erf}^{-1} \left( \frac{1}{2} \right) \right] \\ M_{\mu \sigma}(x) &\thus m_M = \mu -2 \sigma \ln \left[ \sqrt{2} \, \text{erf}^{-1} \left( \frac{1}{2} \right) \right] \end{align*} ## Moyal mode Peak of the PDF: $$ \partial_x M(x) = \partial_x \left( \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} \left( x + e^{-x} \right)} \right) = \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} \left( x + e^{-x} \right)} \left( -\frac{1}{2} \right) \left( 1 - e^{-x} \right) $$ \begin{align*} \partial_x M(z) = 0 &\thus \mu_M = 0 \\ \partial_x M_{\mu \sigma}(x) = 0 &\thus \mu_M = \mu \\ \end{align*} ## Moyal FWHM We need to compute the maximum value: $$ M(\mu) = \frac{1}{\sqrt{2 \pi e}} \thus M(x_{\pm}) = \frac{1}{\sqrt{8 \pi e}} $$ . . . which leads to: $$ x_{\pm} + e^{-x_{\pm}} = 1 + 2 \ln(2) \thus \begin{cases} x_+ = 1 + 2 \ln(2) + W_0 \left( - \frac{1}{4 e} \right) \\ x_- = 1 + 2 \ln(2) + W_{-1} \left( - \frac{1}{4 e} \right) \end{cases} $$ ## Moyal FWHM $$ x_+ - x_- = W_0 \left( - \frac{1}{4 e} \right) - W_{-1} \left( - \frac{1}{4 e} \right) = 3.590806098... = a $$ \begin{align*} M(z) &\thus \text{FWHM}_M = a \\ M_{\mu \sigma}(x) &\thus \text{FWHM}_M = \sigma \cdot a \\ \end{align*}