# Landau distribution ## Landau PDF :::: {.columns align=center} ::: {.column width=50%} $$ L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty} dt \, e^{-t \ln(t) -xt} \sin (\pi t) $$ ::: ::: {.column width=50%} ![](images/landau-pdf.pdf) ::: :::: . . . \begin{center} No closed form for \alert{ANYTHING} \end{center} ## Landau median ::::: {.columns} :::: {.column width=50%} ::: incremental - The median of $f$ is defined by $$ F(m) = \int_{-\infty}^m fdx = \frac{1}{2} $$ - Equivalently $$ m = F^{-1}\left(\frac{1}{2}\right) $$ - PDF Numerical integration up to $1/2$ or QDF is needed ::: :::: ::: {.column width=50%} ![](images/median.pdf) ::: ::::: ## Landau median - CDF computed by numerical integration - Mean computed by numerical root-finding $$ F(x) = \frac{1}{2} \thus m_L\ex = 1.3557804... $$ \setbeamercovered{} \begin{center} \begin{tikzpicture}[overlay] \pause \node [opacity=0.5, xscale=0.35, yscale=0.25 ] at (2.4,0.95) {\includegraphics{images/high.png}}; \end{tikzpicture} \end{center} \setbeamercovered{transparent} ## Landau mode - Maximum $\hence \partial_x L(\mu) = 0$ . . . - Computed by numerical minimization (Brent) \setbeamercovered{} \begin{center} \begin{tikzpicture}[remember picture] \node at (0,0) (here) {$\mu_L\ex = − 0.22278...$}; \pause \node [opacity=0.5, xscale=0.32, yscale=0.25 ] at (here) {\includegraphics{images/high.png}}; \end{tikzpicture} \end{center} \setbeamercovered{transparent} ## Landau FWHM ::::: {.columns} :::: {.column width=50%} $$ \text{FWHM} = w = x_+ - x_- $$ $$ L(x_{\pm}) = \frac{L_{\text{max}}}{2} = \frac{L(\mu_L)}{2} $$ . . . \vspace{20pt} - Computed by numerical root finding (Brent) \setbeamercovered{} \begin{center} \begin{tikzpicture}[remember picture] \node at (-1,0) (here) {$w_L\ex = 4.018645...$}; \pause \node [opacity=0.5, xscale=0.65, yscale=0.5 ] at (here) {\includegraphics{images/high.png}}; \end{tikzpicture} \end{center} \setbeamercovered{transparent} :::: ::: {.column width=50%} ![](images/fwhm.pdf) ::: :::::