# Moyal PDF # Moyal PDF $$ M(x) = \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} \left[ x + e^{-x} \right]} $$ :::: {.columns .c} ::: {.column width=30%} \begin{center} More generally: \end{center} ::: ::: {.column width=70%} \begin{center} $$ \begin{cases} \text{location parameter} \mu \\ \text{scale parameter} \sigma \end{cases} $$ \end{center} ::: :::: \vspace{20pt} $$ x \rightarrow \frac{x - \mu}{\sigma} $$ ## Moyal CDF The cumulative distribution function $\mathscr{M}(x)$ can be derived from the pdf $M(x)$ integrating: $$ \mathscr{M}(x) = \frac{1}{\sqrt{2 \pi}} \int\limits_{- \infty}^x dy \, M(y) = \frac{1}{\sqrt{2 \pi}} \int\limits_{- \infty}^x dy \, e^{- \frac{1}{2}} e^{- \frac{1}{2} e^{-y}} $$ with the change of variable: \begin{align} z = \frac{1}{\sqrt{2}} e^{-\frac{y}{2}} &\thus \frac{dz}{dy} = \frac{-1}{2 \sqrt{2}} e^{-\frac{y}{2}} \\ &\thus dy = -2 \sqrt{2} e^{\frac{y}{2}} dz \end{align} hence, the limits of the integral become: \begin{align} y \rightarrow - \infty &\thus z \rightarrow + \infty \\ y = x &\thus z = \frac{1}{\sqrt{2}} e^{-\frac{x}{2}} = f(x) \end{align} and the CDF can be rewritten as: $$ \mathscr{M}(x) = \frac{1}{2 \pi} \int\limits_{+ \infty}^{f(x)} dz \, (- 2 \sqrt{2}) e^{\frac{y}{2}} e^{- \frac{y}{2}} e^{- z^2} = \frac{-2 \sqrt{2}}{\sqrt{2 \pi}} \int\limits_{+ \infty}^{f(x)} dz e^{- z^2} $$ since the `erf` is defines as: $$ \text{erf} = \frac{2}{\sqrt{\pi}} \int_0^x dy \, e^{-y^2} $$ $$ 1 = \frac{2}{\sqrt{\pi}} \int_0^{+ \infty} dy \, e^{-y^2} = \frac{2}{\sqrt{\pi}} \int_0^x dy \, e^{-y^2} + \frac{2}{\sqrt{\pi}} \int_x^{+ \infty} dy \, e^{-y^2} = \text{erf}(x) + \frac{2}{\sqrt{\pi}} \int_x^{+ \infty} dy \, e^{-y^2} $$ thus: $$ \frac{2}{\sqrt{\pi}} \int_x^{+ \infty} dy \, e^{-y^2} 1 = \frac{2}{\sqrt{\pi}} \int_0^x dy \, e^{-y^2} + $$ ## Moyal mode Peak of the PDF $$ \partial_x M(x) = \partial_x \left( \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} \left( x + e^{-x} \right)} \right) = \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} \left( x + e^{-x} \right)} \left( -\frac{1}{2} \right) \left( 1 - e^{-x} \right) $$ \vspace{15pt} $$ \partial_x M(x) = 0 \thus x = 0 \thus x = \mu $$ \vspace{15pt} $$ \thus \mu = m_L $$