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XXX. Theory of lonization Fluctuations

By J. E. Moyavr*
Department of Mathematics, The University, Manchestert

[Received August 20, 1954]

SUMMARY

The distributions of the loss of energy by ionization of a fast primary
and of the numbers of ion pairs it produces are derived. It is shown that
down to quite small values of the primary ionization. both can be
represented by the same *universal’ distribution if the variables are
reduced by a proper choice of scale and origin, which accounts for the
experimental fact that jon pair numbers are proportional to primary
energy loss. These conclusions remain valid when one takes into account
quantum resonance effects and the details of atomie structure of the
absorber.

§ L. INTRODUCTION

THE main object of the present paper is to derive expressious for the
distributions of (¢) the loss of energy by ionization of a fast primavy
particle passing through an absorbing medium : (b) the numbers ot ion-
pairs produced by such a particle. We shall try in particular to explain
the experimental fact that these two distributions are very approximately
proportional to each other: i.e. that the energy lost by the primary
particle per ion-pair produced is approximately coustant (of the ovder
of 35 ev).

Landau (1944) has shown that under certain simplifving assumptions,
the distribution of energy loss can be expressed as a universal curve in
terms of certain reduced energv variables (depending on the charge.
mass and velocity of the primary, the atomie properties and the thickuess
of the absorber). We shall first derive a closed analytic expression for
Landaw’s distribution. In view of discrepancies between this distribution
and the results of recent experimental work (see West 1953) we shall
exanmine possible departures from it due to: (a) small thicknesses of
absorber: (b) the influence of the detailed atomic structure of the
absorber; (¢) the influence of quantum resonance effects in distant
collisions. Finally, we shall derive a theoretical expression for the
distribution of the numbers of ion pairs produced by the primary. This
will allow us to decide whether these discrepancies can be due to the usual
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assumption made in cloud chamber, ionization chamber and propor-
tional counter work of a constant energy loss per ion-pair. The experi-
mental evidence will be analysed in a forthcoming paper by Owen and
Eyeions ; a review of the subject by Price will appear in Reports on
Progress in Physics.

§ 2. GENERAL KXPRESSION FOR THE 10N1ZATION ENERGY
IISTRIBUTION

In deriving an expression for the ionization energy distribution, we
shall make the following assumptions :

(1) Successive ionizing collisions are statistically independent.

(2) The total energy loss of the primary is very much smaller than its
initial energy, and hence the decrease of primary energy may be neglected.
Our theory will not therefore apply to slow primaries or great thicknesses
of absorber. We also assume that energy losses due to radiation or
nueclear interactions are negligible.

{3} The absorbing medium has a homogeneous constitution.

We shall develop the theory first for an arbitrary total cross section
o(E). where No(F)dE di is the probability of an energy loss between
# and E+dE in an absorber thickness df. N being the number of absorber
atoms per unit volume. The primary ionizaiion rate is then

y—=N |l o(H) dE,
Jo

and the jonization energy distribution per collision ix
RY E o
H(E)= "f Vo with | gy dk=-1
S0
{y dt 1s the probability of an ionizing collision in the thickness dt,
H(E) dE the probability of an energy loss between E and E-LdE given
that a collision has occurved).
Let (L, t) dK be the probability of an energy loss between E and E--d&
in a thickness f. 1t is easilv seen to follow from assumptions (2.1),
(2.2) and (2.3} that

g

xUE t by L B W)Wty dW . L (2.

<0
For a small thickness 8f. the probability that no energy is lost is
L—-¢ot- o(8t) . the probability of an energy loss between K and E--dE
is qp(F) dE3t+0(dt) : hence
x(#. 0t)=(1 —¢3t)3( K )~ qp(H)d(+0(8t) L. (2.2)
in particular, y(£, 0)=56(F).*
We introduce the Laplace transform of y(#£, t):
Mx, = | exp (—ab)y(B.0ydE. . . . . (2.3)

S

*The Dirac §-function 8(F) should not be confused with 8¢,
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it follows from (2.1) that

Mo, ty+t)=M(x, b)) Mo, ty), . . . . . (2.4)
and hence from (2.2) and (2.4) (noting that M(«, 0)=1) that

oM, ) . 1
FrEE E}I{t'g}{M(“’ ot)— 11 M (. £)

1 e ]
== lim v {(l ~-qSt) -+t ’ exp (— ol )p(E) dK +o(5t)-- l}ﬂl(a, t)
a0 Yt R

r

:WJ\q'[:[exp(-~aE)—l]¢(E)dE}M(a.?}. C. L (25)

The solution of the differential eqn. (2.5) with initial condition M (e, 0)=|
I8

P 3
M (o, t)=exp {tho |exp ( o k)~ 1]|d(E) dEr =exp |QR(«)], (2.6}

where ()=gqt is the mean number of collisions (i.e. the primary ionization)
in the thickness f, and

o

R(oc):J lexp (—al)—LUS(EYdE. . . . . (2.7)
0
The standard inversion formula for Laplace transforms then gives
] jeiieo
B, Q= 5=|  explQR@)+=Hdz . . . (23)

(it is convenient to express y in terms of the mean collision number ¢
instead of the thickness ¢).

An asymptotic expansion for y may be found from (2.8) by the saddle
point method (see e.g. Jeffreys 1946 and Daniels 1954). As is usual in
applications of this method. we can accept as a sufficient approximation
to y the first term of this expansion. namely. the expression

B ]
x(K. Q) dl-= p [20QR"(x)] VZexp {Q|R(x)—aR ()]} dk. (2.9)
where « is related to & by the expression

B QR =Q | Fesp(—ab)(E)dE, . . (2.10)
K

R (). - |‘ Reoxp (—ak)p(B)dE. . . .. (2.1

<
and ¢ is a normalization eonstant, chosen to make
v
J X(E.Q)dE=1.
0

The most probable energy loss £, is by definition the value of E fcr
which x(#, @) is maximum. Maximizing the right-hand. side of (2.9)
with respect to «, we see that I/ ,=- —QR'(x, ), where a,, is the solution of

R"(x,)42Qu [R"(x,)2=0. . . . . . (2.12)

T2
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§ 3. Tue Crassical (THOMSON) ('ROSS SECTION
Following Landau (loc. cit.) we now take for o(K) the classical
{Thomson) cross section (see e.g. Bohr 1948)

rB/(lE/F2 for E,<K<E,,.
No(F)dF= .3
l‘ 0 . E<kE, or E=kK,
et
where B=2xN —. . . . . . . . . (32
pr®

N is the number of atoms per unit volume in the absorber, © the mas-
of the electron, ¢ its charge, ze the charge of the primary, v its velocity.
Z the ‘effective ' atomic number of the absorber; £, and £, represeni
average values for respectively the minimum and maximum transferable
energy per electron in an ionizing on]]i\'i(m (Qoe §5). It follows that

7o (IL 1 BZI
q- H/i = B <ho - ‘,m\ ~ Eu and hence ()=~ i
. dE
(ﬁ(E) K= Eoiﬁ .. . . . . . . . . - . . . (33)

This cross section gives the eclassical expression for the average energy
loss in thickness

. Fu dE E,

X
| BBy dB=BZ1| =5 =Bt log 7",
B RO “0
known to be too small by approximately a factor of 2. The integral
diverges if we make K, - - . However. it is found that for fast primariex
the value of E,, has a negligible effect on the shape of the energy loss
distribution curve;* this renders legitimate the simplifving assumption
that £, is infinite.

It is convenient when substituting from (3.1) into the expressions of
§ 2 to change to the energy variable e-=FE/K; we then find that

(3.4)

Ra)y=exp (—a)—1- =« i:) exp | —uxe](defe) ;

Rlo)= ] exp(n0™: Rim)=2 R"'<a>=~%<l+l>'
RN

€ o 8

Hence xle. Q) de-_:v-: \/<)—°‘Q> exp llar Qe *—1)]de, . . (3.6)
' da
where (-\/<~7'> 0 exp| —la+0Qe " )]W
=exp (—Q) 2 Qi1 P A

a0V (2 n+1 ) n!

* This curve (see fig. 3) consists of a sharp peak centered on £, (representing
the statistical effect of frequent collisions with small energy transfer) followed
by a long tail of small ordinate (representing the effect of rare violent collisions).
Taking the finiteness of E,, into account merely alters this tail in such a way as

to make E< oc without appreciably affecting the main part of the curve.
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The integral above is taken from 0 to oo because a decreases from oo to 0
as ¢ increases from 0 to oo. This can be seen from relation (2.9) which
connects ¢ to « ;

6::—~R’(oc);t &lme-”(%:f—Ei(vax); A - R )

the exponential integral Ki(x) is tabulated (cf. Janke-Emde 1938 or
British Association Tables 1951). For small values of x. however,
(@<:1), it is more convenient for computation purposes to transform
{3.8) as follows

€ Qs da 1 da o A
P X o - SR S . ~ o
v ’ J ’ x La (e Y r un(( b 2 log «
_ da
e dog | e 2
Lo r
~ o

::—"("*—iog‘]_ x *[)n -

| . .

o
where ¢ =-0-377 is KEuler's constant. The numerical evaluation of y is
discussed in the next section in terms of corrections for small @ to
Landau’s universal distribution.
Substituting from the above in (2.12). we find the value of «, of «
which maximizes (3.6) by solving
1
2Qexp (- oz)=14—. . . . . . . (39
»
graphically (fig. 1). and the corvesponding most probable value of the
energy loss e, from (3.5): ¢, is shown as a function of ¢ in fig. 2. It is
seen that the equation has no solution for ¢ <2-44, indicating that for
such low values of . yle. ) does not go through a maximum, but
decreases more or less exponentially as e increases. However, the
accuracy of the saddle-point approximation is poor for such low @ ;
for 5. we see that o - 0-13: hence we can approximate to (3.9) by

the equation Lo i ]
Lf — )= — —1. . . . . . (3.10)

30 4 A0
20 =z, %, o,,

whose solution is to a good approximation

1 .
— =2()—2—
Ly
Taking the first three terms in the right-hand side of (3.9) we obtain for
the most probable energy loss the approximate expression
[ 2Q—1 )

20— 2 | — 3.12
(202 s=1) ~O+ g 4
which for () 25 departs by less than 19, from the value obtained by the
graphical solution of (3.9) (ef. fig. 2).

1 1
ST (3.11)
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.
Fig. 1
10000
5000
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Solution of eqn. (3.9) : the values of 7, are given by the abseissae of the inter-
sections of the curve 1--1/2 with the curves 2@ e * for valnec of )---2-44.
9, 10, 20, 50, 100 ; there ix no intersection (and hence no maximum)
for @ 244

i, 2

2¢ -

‘II |rT7l|| T (]V!I‘[ T T‘r'l‘l]’l’
50 100 500 1000 5000 10000
Q —>
The most probable energy loss £, (in units (/) as a function of the primary
ionization @ : the full curve is obtained by numerical solution of
eqn. (3.9), the dotted and dashed curves represent respectively the
approximations of eqn. (3.12). and (4.4).
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§$ 4. THr LANDAU APPROXIMATION

One finds that for large ¢, the major contribution to y(e. §) in (3.6)
comes from small values of z (as we have seen. 2, s small for @=5,
and the curve for y is sharply centred about €,). Hence. following
Landau, we obtain an asyniptotic expression for y valid for large () by
neglecting terms of order » compared to log = : thus, we take

Ro) =a(C'—1+loga). . . . . . . (41)

Substituting these values, (3.6) and (3.8 «) become

1 %)
xle. @) de-= p; \/(277_@) exp (o) de,

' o= g | e (o) o (+.2)
where = ——— | exp o ===, L. .2
VEm 1, VIQ7) 2
Q ~('—log o. N € )
To the same order of approximation, we may take for the most probable
values , -
4 ! E;U ﬁ !
=35 and 0 H/f =—C+log20Q. . . (*4)
Changing to the reduced energy variable
€ ¢, KE—H)
ES L= =—log2Qx, . . . . (4.5)

Q) BZt

we find the following explicit expression for Landau’s distribution

1
xo{w) dw= \/—(2;) exp{ Hotexp(—w)|ldo. . . (+86)

The half-width dw of this distribution is easily found to be dw=-3-58.

We see thus that the asymptotic expression for x has a ‘universal ’
form independent of ¢ when the energy is expressed in terms of the ve-
duced variable w. The accuracy of this expression has been assessed by
computing x for small values of  from the more accurate expression
(3.6) and changing over to the reduced variable (4.5) : the results are shown
in fig. 3. Surprisingly, no appreciable departure is found from Landaw’s
distribution Jor ()220 ; the departure for =10 and =5 is indicated
on the figure by dotted lines. We must mention that the expressions
for ¢ and £, above are not the same as Landau’s: the relativistic log
rise with increasing energy is absent, because we have neglected quantum
resonance effects (see the discussion at the end of § 6).

§ 5. KFFECTS OF ATOMIC STRUCTURE

In order to assess the detailed effects of the atomie structure of the
absorber on the distribution of ionization energy. we shall use a crude
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classical model : we assume that the classical cross section is valid for
the electrons in each shell of the atom, with a minimum transferable energy

Kig. 3

.
Bozs

[ \

o

Distribution of primary energy loss: the full curve is Landaus universal’
distribution (4.6), the dashed curve is computed from egns. (3.6) and
(3.8), for =5 and 10.

equal to the ionization potential of the shell. Let [, be the ionization
potential of the jth electron. j=1, 2, .. .. Z ; then the total cross section

" o(B) dE= é‘l o;(K) dE, with No,(E)= {g?/E2 f(:r gijz (5.1)
where B has the same definition as in eqn, (3.2). Then

=Nt ‘: o(B) dE= Bt 2 |11 I«EZ B ,ézl %‘-’ (5.2)
where % = é’ljlj . (5.3)
and H(E)dE= IIZ“ZN.:Z‘I o E)dE. . . . . . (b4)
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(hanging to the energyv variable e=#A/E, and substituting in the
expressions of § 2, we find R(a) and hence y(e. @). It turns out that an
asymptotic expression for y similar to that derived in §4 is valid for
values of ) >20. Restricting our attention to this case. we find that to
the same order of approximation as in §4.

H(m)/.[('LIA-l()g(V;Jb):I, R G

where log £ = (1. ) Z log I;. (Note that E=-BZilog (K, /k,): ie in

t
Dt
~

the present classical model E,and f, are the average ionization potentials
appropriate for the L&lculatmn of respectively the primary iouization ¢
and the average energy loss K.) We then find for the most probable

valaes » "—1:20). and hence

o B/ 20K,
0~ Bm-(tleg
log 287t -
= ('} e g (5.6)
Introducing the reduced energy variable
e, H—K)
= 2o og 200, . . . . (5.7)

0 BZi

we see at once that the asymptotic distribution is exactly the same as
Landaw’s, namely

xp{w) dw= '71)— exp{—Yot+exp (—w)]ldw. . . (5.8)

V(2m)

Thus, the details of atomic structure. with the assumptions made above,
have no effect on the asyvmptotic distribution* but only modify the
expression for the average number of collisions ¢) aud the most probable
energy loss #, : these conclusions are not likely to be modified by any
more refined theory of these effects. though we may expect improvements
in the expressions for ¢) and £ .

§ 6. QUANTUM RrsoNaNcE Krrects

The classical eross section proportional to §jE? is valid for values
of E>1, the average ionization potential of the absorber. Its failure
in case e2/hiv=c/13Tv <1 (where h is 1= times Planck’s constant) may be
ascribed to quantum resonance effects in distant collisions, which increase
the cross section for values of £ near I, and consequeiitly approximately
double the mean energy loss (see e.g. Bohr, loc. cit., p. 89 for a discussion).
In order to assess the effect of this resonant increase on the ionization

* Blunk ef a/. (1950, 1951) appear to arrive at a contrary conclusion.
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energy distribution, we shall postulate (since an exact expression is not
available) a cross section
BZ dE
o(B) dE= ==

RNCEDENES “h

of the usual form for quantum resonance effects. I' being the half-width
of the resonance curve. We expect that I"-</ . hence o is approximately
equal to the classical cross section when £> 1. In caleulating the ioniza-
tion energy distribution. we must set o(F)==0 for non-ionizing collisions
where #</. Hence

X k , ha = BZt ]
()_\l’, ({,{__B/?‘ IW‘F," /“TFEE F . "
2 dE :
q‘)(E)l//E —VJ,_——,
(K12 T j
(6.2)

Travstorming to the enecrgy variable e.<(/- 1).1" and substituting in
the expressions of §2. we find that

de 2 . .
j—— -+ —(sin o Ci z-~cos o 81 ), (6.3)
1+ € ™

2

l lexp (- e) -
<0
where Ci o, sl 2 are the cosine and sine integrals respectively (cf. -Jahnke-
Emde, loc. ¢it.. p. 3). For the same reasons as in §5, we need only consider
the asymptotic distribution. It is easily seen from the series expansions
of Cia, si o that to the same order of approximation as in § 4.

2
R(z):;a((_'-—~l+l()g )y . . . . . . (6.4)
: 2K —1 2
n, = 4%, and hence %:; ;}7/ _Tr(l 2 —Q A(/') (6.5)
Hence we see that as in §5, if we change over to the reduced energy
variable Ce—e, EE ;o \ kS 5.6
o=~ = TBm ~8\ag) - &

then the asymyptotic energy distribution takex the * universal ’ form
| i
xrlw) dw== T )exp {—Hotexp (—w)]tdo. . . (6.7)

Thus quantum resonance effects too modify only the expressions for ¢ and
K, but not that for x,(w). and here again a more exact theory of these
effects is unlikely to change these conclusions (though we may expect a
modification of the expressions (6.2) and (6.7) for ¢ and £,). An
estimate of I’ may be obtained by equating the primary ionization rate ¢
with the value calculated bv Bethe (1933)

_ BZ 2ucB? |_2BZ
q= [ {log’( Bz +8— ﬂz}“‘; T;

"
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where 8=w,c. [ is the outer shell ionization potential. » and s are constants
depending on the absorber (for hydrogen, r=0-285 and s==3-04). With
this estimate. ¢ and ¥, exhibit a relativistic log rise with increasing
energy similar to the expressions given by Landau (loc. cit.). Alter-
natively. one may estimate " from the experimental values found for ¢.

§7. THE DisTRIBUTION OF NUMBERS OF TON PALRs

The production of ions by a fast primary particle constitutes a multi-
plicative or brauching stochastic process : the electron ejected in a primary
ionizing collision may. if it has enough energy, ionize another atom ; the
secondary electrons may then ionize again. and so on, the proeess ending
when all secondaries have become too slow to ionize further. We shall
develop the theory under the assumption that the collection or recording
of jons is delayed long enough for the process to terminate, so that the
ion pair distribution per collision is the same for all .collisions: this
assumption is valid as a rule in ionization or eloud chamber work : post-
expansion cloud chamber tracks form however an exception, since they
record only the primary ionization. We shall also neglect extraneous
effects such as increase in ionization due to acceleration of the electrons
in electrode tields and to photoelectric etfects in the gas or chamber walls.
which become important in proportional counter work.

let then ¢, be the probability that £ ion pairs are produced in any
given ionizing collision, with t=1,2, ... and 2y, =1, let p,(¢) be the
probability that a total number » of ion pairs is produced in an absorber
thickness ¢, and write ¢ as before for the primary ionizing collision rate.
It then follows from assumptions (2.1). (2.2) and (2.3) that

/;"(tl—i—tz)r_z,’ Pi(E) P jlta), <. .. . (1
1=0
l)n(t_*-Bt):(] -——([8t)8710+(]([,/(§[ ‘I”‘{)(Bt)' . L (7‘3)
Introdueimg the Laplace transform of the ion pair distribution g ,(¢)
M. )= Ze ™p ), . . . . . . (1.3)
we fHind as in § 2 that o
Mo, ty+t)=M(x, t;) . M(x, t,), S A 3
OM(«, t) SR 1, _
— = {(;ufi (e " anf Mz ty, . . . . (1.5

and hence that

M (s, t)==exp {qt z (e "—1)q, r=exp |[@R(z)]. . . (7.6)

m=:1
where @==¢t as before, and

Roy= Z (e *— V). . . . . . . (17

ri=1
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The inversion of the Laplace transform (7.8) is given by the well-known
formula

e

iexp [QR(z)+mnz]dz. . . . . (7.8)

€ —mn

pa(@)= Z—;J

This integral can be evaluated by the saddle-point method: the first
approximation to it (which may be assumed as previously sufficiently
accurate for our purpose) is

1
PAQ)= S 25QR"(2,)] 12 exp (QIBla,)— o, R, )} - (7.9)
where 2, is velated to » by
e QR (0 ,) =0 2 lexp (- lx,)qe - . . (7.0)
£
RMa)= X [P exp (—ka) ¢4
k=1

and ¢ is as before a normalization constant

¢ Z[20QR @,)] V7 exp QIR(,) —, B(o,)]|
=0 | "
= ’ v QR ()] exp [Q R(z)—aR («)]) do  Spolt).  (7.11)

The last approximate expression for ¢ is obtained by the use of Kuler's
summation formula. with %y, «, corresponding respectively by (7.10) to
n=0 and n==rc. These expressions are close analogues of those found
in §2. Similarly, the most probable number of ion pairs is, as in §2.
the number #, (which need no longer be an integer) corresponding by

(7.10) to the solution =, of

R (o) + 20, | R (@) =0, . . . . . (7.12)

§ 8. lox PAlR DISTRIBUTION WITH THE
CLAss1CAL CrOSS SECTION

We shall now develop the theory of ion pair distribution foi the
following crude model : we assunie the elassical cross section for ionization
by the secondary electrons as well as by the primary particle, and set
this cross section equal to zero if the energy of the electron is less than the
mean ionization potential / of the absorber. Let K, be the energy of
the primary particle, £, /£,. . . . those of the secondary electrons succes-
sively ejected in the chain process resulting from a single primary ionizing
collision. The total cross section o(f; £ ) dF for an ionization energy
loss between K and E+-d& by the kth electron of energv £, is

met\ 1 ” )
) (—)—-, it £,>=1 and E</t,,
o(B; B )= { \Ex/ E* .(8.1)

Lo if B,<I or E>FK,;
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hence. it= collision probability per unit thickness is
R metlV
|

I
N| ‘(BB )dE = <— 7> if B, =1,
NEY=1{ 1 * B\l B, ’ (8.2)

‘i\ {3 if E<kl,

while the probability that it should »of ionize further in a thickness ¢ is

7N /1
( { - A (- - )tl it B, 2
k(f . )==exp |- A(K )] J' e \L By (8.3)
Y

1 it K,

The probability that the primary collision produce a first electron of
energy between K, and £,--dFE, is [dE j(£-1)*: hence, the probability
that just one ion pair be produced in a thickness ¢ is

- 1dE, IE

J“ K(H+, t)(b1+1) =34 o Ll—exp ( -melNG2I)L L (34)

The second term in the right-hand side of (8.4) is negligible for any
reasonably large value of ¢ (if e.g. J==25 ev then for a monoatomic gas
7etN/I2 == 2-8x 103 em~1); hence the probability ¢; of exactly one ion
pair per collision is just the probability that the first electron has an
energy: <I: ie. g;=4%. Similarly, we can simplify the calculation of
qs: Q3 - - - DY setting «(¥, t}=0 for K>>I and letting -~ o in the final
result.

The calculations get progressively more complicated for the succeeding
¢, details for ¢, will be found in the Appendix. However, the distri-

bution @

Ik:m. (kzl.,'.)..) . . . . . (8.5)

{where @ is a normalization constant chosen to make Xy, =1} fits approxi-
mately the first few ¢,, and has the right sort of behaviour for large &
{analogous to the 1/E? law for the distribution of energy loss per collision).
The value of @ may be obtained from the formula (see e.g. Knopp 1928)

AZ} Erl :%coth 7—3=1-077; hence a=0-929. . (8.6)
The distribution ¢, is independent of I : this gives us some confidence
in its approximate validity in spite of the neglection of inner shell contri-
butions. Imn fact, it appears from a rough estimate of the latter’s effect,
using the model of § 5, that the ¢, are not appreciably modified, provided
that the inner shell ionization potentials are much greater than that of
the outer shell.
Substitution of (8.9) in the expressions of §7 gives

i o e-ke__1 1 o ewka 1 w p2 o—ka
—_ N — —_— 4 S -z ’r — i,
a (=) oy k2L a,R (=) LT (lR (@) i K241

(8.7)
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The series above converge very slowly for small values of «; for the
purposes of computation. we transform the last two as follows:

]R’ é e ko E e M Zr‘ ¢ ko 1’

“ (a):k-_-|k(k2+|)—/.-=1 k :/.-zll"(/\’z*l)_H”g(l Y l (8.8)
¥ .0

SZ 2T S E T e e j

For values of a<0-04, it is more convenient to compute by numerical
integration from the following transformed expression :

| o win (8-
;[R(oa)— 1]== 1 \_111( 1)110

el—1]

- . .
R C% o §in g L .

cogox 7 Y I df > +sin z
AP SR R PYURS g

U MO

I *l—gos § 1
{log (] —e ) + L (AZ—JI) J O—ét}:]— (I’H}(k s (89)
1 foeos (@) fe ] «ginf
’71{ ()= - '/ Wdﬁ--"—SI“ at-):l o Joe,,_ ltlf)}
f N [ 2} —cox A >i\ ‘
co\/\loo‘ l—e )—f—‘%" =TT Jo PO (lHJ J

The substitution of these expressions in (7.9) and (7.10), taking
=BZt/l, vields the ion pair distribution p,(€): in order to compare
it with that of the ionization energy. it isx important to evaluate its
asymptotic expression for large (). [t is easily seen from the trans-
formed expressions (8.9) that to the same order of approximation as
in§4,

| w,

H(”j,)'":.l{:/_([) — ]:]()g %) : g_p'; ‘—)U(I : ()” =y l()g_\ ’()l( . (8.“))

where « is defined by (8.6) and b—=ZLjk(4*+ 1)=0-672.  Substituting in
{7.9) and changing to the reduced variable

neon)
()= Tll‘ = s l()g 2(\)117., . . . . . (Sl l)

we are led again., as in the case of ionization energy, to Landau’s
universal * distribution : that is. we find that

n—-n,’ !

PAQ)= QX"<Q—H>’ i
N CRES

J

]
where xifor)== NIETS exp | —Lo++exp (—w)il
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The deviation from Landau’'s distribution for small values of ¢ is
somewhat more marked than is the case for the energv loss distribution :
it is shown in fig. 4, where Quyp (@), computed from expressions (8.8)
and (8.9) for Q==20. is plotted against o.

Fig. 4

.

I
wQ=20 —
k7
¥

Distribution of nunibers of ion pairs : the full curve is Landau’s distribution
(8.12), curve (i) is computed with the classical cross section. §8 for
(2—=20. curves (ii) and (iii) with the quantum resonance cross section,
§ 9, for ():=50 and rvespectively ¢==0-17 and 0-50.

§ 9. Tox Pair DISTRIBUTION WITH QUANTUM RESONANCE ErrgCrs

The effeet of quantuin resonance is to inerease the primary energy
Joss eross section for values of the energy near the ionization potential /.
and hence to inerease the probability ¢, of produecing a single ion pair
per collision. Repeating the calculations of §8 with the cross section
(6.1) for the primarv. and the classical cross section for the (slow) ejected
eleetrons, we find that

20\ b, 2

== — " — Ttan !+, N G|
Il T J 40"—1 1 - T F ( )
For relativistic primaries, where {/I" is large. we have approximately
2r
G =l——==. . . . . . . . (Wia)

w1
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Continuing the calculations in the same way. one tinds that the distri-
bution ¢, can be fitted approximately by the relation

a 4 r r
4.=9 <m—1>, where == R = l~190—[, (k=2.3....): (9.2)

‘
one can easily verify that Xg,=1. This may be interpreted by saying
that at every collision there is a chance 1 —y of a resonant collision, and
a chance ¢ of a non-resonant one. given which the distribution of ion pairs
is the same as in §8.

Let us now write R.(x), R,/ (), etc. for the expressions found in §8,
and R;(2), R, («), etc. for those corresponding to the quantum resonance
cross section. [t then follows from the foregoing that

Ry(e)=(1=g)e* V- gR(x): R/(x)=—(1—gle *+gh (x): (9.3)
and so on. To the same order of approximation as in § 4. we then have

R (z)= - (1 —g)a-+gaa(b— 1--log ) ;

f
L (94
R, (a)= (1 —g)-yga(b--log z): ete. |
and hence
! l l 1 ’ D
“s' = Y0ga 2210 75 M =Q[1--y-+ga(log 2¢Qga—b)}. . (9.5)
2.2160)
where @==BZt/2". Nubstituting in (7.9) in terms of the reduced
variable N’
= ——2 —_log 2 L I X
w Tga log 20gao., (9.6)

we find as in § 8 that

0)— 1 n—mn,’
1),,(1)~~be A

1
where xilw) = s exp{— Lw-+exp (—w)l}.
The deviation from Landau’s distribution is more pronounced than is
the case with the ion pair distribution found in §8, but is still not very
marked. This may be seen in fig. 4, where the curves of Qgap, (@) as
a function of w, computed from expressions (9.3), are shown for Q=50,
y=0-5 and ¢=0-17. We may remark that if I" is evaluated by equating
g=mBZ/2" to the experimental values of primary ionization (cf. §6),
one finds that near minimum ionization ¢ is approximately equal to ! for
most gases.

The tendency of the ion pair distribution to the same (Landau)
distribution as the primary energy loss accounts (at least in the case of
fast primaries) for the experimental fact that the energy lost per ion pair
is a constant, approximately independent of the primary energy:
furthermore, we may presume that this result is not sensitive to the
actual value of the cross section, since it holds for both the classical

E
}
; (9.7)
!
|
J
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(§8) and the quantum resonance (§9) cross sections. Comparing the
expressions for w in §§8 and 9 with those respectively in §§4 and 6, we
see that the energy per ion pair must be approximately equal to the
average ionization potential. This is substantially less than the experi-
mental values (of the order of 35ev), presumably because the latter
refers to total energy loss, including excitation of the atoms, whereas our
calculations refer to energy lost by ionization only. Furthermore, the
use of a single average ionization potential is undoubtedly a very rough
approximation, especially at the higher atomic numbers, where inner shell
ionization and excitation, Auger effects and the like must contribute
substantially to ionization and primary energy loss. We cannot in fact
expect the theory in the present section to have more than qualitative
validity for elements heavier than helium.

§ 10. ('ONCLUSIONS
We conclude from the foregoing :

(1) That Landauw’s * universal * distribution appears to be valid for
both primary energy loss and numbers of ion pairs, which explains their
proportionality in the case of fast primaries.

(2) That it remains valid down to unexpectedly small values of the
primary ionization ).

(3) That none of the effects considered in this paper (atomie structure,
quantum resonance, proportionality of numbers of ion pairs to primary
energy loss) explain the experimentally found deviations from it.

ACKNOWLEDGMENTS

It is a pleasure for me to acknowledge my indebtedness to Dr. B. G.
Owen and Mr. D. A. Eyeions, at whose request I considered the present
problem, for many invaluable discussions and suggestions. I am also
greatly indebted to Mrs. A. Linnert, who carried out the computations

and drew the graphs.
REFERENCES

BeraE, 1933, Hondbuch der Physik (Berlin : Springer), Vol. 24, 1. p. 518,

BLuxck and LEisecaxa, 1950, Z. Phys., 128, 500.

Bro~xck and WEsTPHAL, 1951, Z. Phys., 130, 641.

BonRr, 1948, The Penetration of Atomic Particles through Matter (Copenhagen :
Det Kgl. Danske Videnkabernes Selskab), pp. 64, 76, 80.

BritisH AssociatioNn TaBres. 1951 (Cambridge : University Press). Vol 1,
3rd edn., pp. 31-33.

DaxirLs, 1955, Annals of Math. Statistics (to be published).

Jaunke-Empz, 1938, Tables of Functions (New York : Dover Publications),

2nd edn., pp. 6-8.

JEFFREYS and JEVFREYS, 1946, Methods of Mathematical Physics (Cambridge :
University Press), st edn., pp. 472-6.

Kxopp, 1928, Theory and Application of Infinite Series (London and Glasgow :

Blackie), p. 378.
Laxpau, 1944, J. Phys. U.S.S.R., 8, 201.
WesT, 1953, Proc. Phys. Soc. A, 66, 306.

SER. 7, VOL, 46, NO. 374.~MARCH 1955 U



Downloaded by [University of Pennsylvania] at 07:40 25 January 2015

280 On the Theory of fonization Fluctuations

APPENDIX
Calculation of q,

In order to evaluate ¢,, we note first that the probability that electron 1,
of energy K,>I, suffer an ionizing collision between thicknesses r and
T7-+d7, thereby producing electrons 2 and 3 with energies respectively
between E,, E,+dE, and E,, E,+dE;, where E,—=F,—FE,—1I, and that
electrons 2 and 3 ionize no further between thicknesses ~ and ¢, is

wlE7) . No(Ey; BE)dE,dr . k(B t—7) . k(B,—Ey—1,t—7), (Al)
where o and « are given respectively by eqns. (8.1) and (8.3). We then
obtain ¢, by multiplying (A1) by the probability distribution Id&/(E,+1)*
of electron 1. integrating with respect to K, (from 0 to E,—1I), to E,
(from I to o), to = (from 0 to t), and finally making t— oo: thus
IdE’l “t AR

(12:}31)1010 I WJUK(EP T) d'rA . o(Ey: Ex(Ey, t—T)
Xk(l,—Ey—1,t—7)dE,. o V- V3]

The only positive contribution to ¢, in the above comes from the range
of values of £, and £, which make E, and E,=FE,—E,—I both <,
and hence I <{F,<3]. 1f E,>3I, then one at least of electrons 2 and 3
will have an energy ==/, and will therefore ionize further. If I <CH,<2I,
then E,+FE,<I, and therefore both K, and E, are <I, and will not
tonize ; hence, we get from this range the contribution

}‘21 IdE, 1

Y (B IR 60
If 21 <<E, <31, then the requirement that £,</ and £,—F,—1 <1 means
that the range of £, must be limited to #—2[<<E,<<I. The last two
integrals in the rlght -hand 51de of (A2) yield in this range

= we!N  dE,  E,3[—E,)
|, expl=AEy)r dr ‘ B, (B, 417 2B, 17
integrating with respect to ¥, we obtain the contribution
MEB[—E,) IdE, 1 1 log

Ju 2B D (B,+IR 12 8 8%
Adding these two contributions, we finally obtain

1 1 3

Note added in proof —Contrary to the conclusions stated above, it now
appears from a critical analysis by Dr. E. P. George of the available experi-
mental data that agreement with the theory is substantially improved, at
least for gases, by the results of §6 (owing to the broadening of the scale for
the reduced distribution by a factor #/2 : cf. eqn. (6.6)); this was also pointed
out to me in a letter by Dr. B. T. Price. It now seems possible that, with the
introduction of a more exact cross section, the theory should account for all
the facts.

Dr. U. Fano has pointed out that the approximate distribution (4.6) does
not agree with Landau’s numerical evaluation for large w owing to the break-
down of the saddle-point method in this range. This is not very important
as regards comparison with experiment, because the frequency of events with
energv loss greater than twice the probable value is small {of the order of 5%,).



