#!/usr/bin/env python from matplotlib import pyplot as plt import numpy as np import sys plt.figure() # plt.figure(figsize=(5, 3)) # plt.rcParams['font.size'] = 8 # useful coordinates y_min = -0.0086 # y min axes y_max = 0.1895 # y max axes me = -0.22 # mode f_me = 0.1806 # f(mode) h_f_me = f_me/2 # falf f(mode) x_m = -1.5867 # x₋ x_p = 2.4330 # x₊ # prepare plot x, y = np.loadtxt(sys.stdin, unpack=True) plt.title('Landau distribution', loc='right') plt.xlim(-10, 10) plt.ylim(y_min, y_max) # draw the lines plt.plot([-10, me], [f_me, f_me], color='gray') plt.plot([me, me], [f_me, y_min], color='gray') plt.plot([-10, x_p], [h_f_me, h_f_me], color='gray') plt.plot([x_m, x_m], [y_min, h_f_me], color='gray') plt.plot([x_p, x_p], [y_min, h_f_me], color='gray') # draw the function plt.plot(x, y, color='#92182b') # draw the notes s = 0.012 S = 0.2 plt.annotate('$f(m_e)$', [-10 + S, f_me - s]) plt.annotate('$f(m_e)/2$', [-10 + S, h_f_me - s]) plt.annotate('$x_-$', [x_m + S, y_min + s/2]) plt.annotate('$x_+$', [x_p + S, y_min + s/2]) plt.annotate('$m_e$', [me + S, y_min + s/2]) plt.tight_layout() plt.show() # plt.savefig('notes/images/1-notes.pdf')