#!/usr/bin/env python import matplotlib.pyplot as plt import numpy as np import sys def f(x, p_max): return x * np.log(p_max/x)/np.arctan(np.sqrt(p_max**2/x**2 - 1)) def main(): bins = input() step = input() bins = int(bins.split("\t")[1]) step = float(step.split("\t")[1]) counts = np.loadtxt(sys.stdin) edges = np.linspace(0, bins*step, bins+1) plt.figure() # plt.figure(figsize=(5, 3)) # plt.rcParams['font.size'] = 8 plt.hist(edges[:-1], edges, weights=counts, histtype='stepfilled', color='#e3c5ca', edgecolor='#92182b') plt.title('Simulation', loc='right') plt.xlabel(r'$p_h$') plt.ylabel(r'$\left<|p_v|\right>$') # x = np.arange(0, 10, 0.001) # y = f(x, 10) # plt.plot(x, y, c='#92182b', linewidth=2) plt.tight_layout() plt.show() # plt.savefig('notes/images/4-fit.pdf') if __name__ == '__main__': main()