/* This file contains functions to * compute the Landau distribution * PDF, CDF and QDF functions. */ #include #include #include /* This is a wrapper needed by `landau_cdf` because * the numerical integration expects a function * with parameters. */ double landau_pdf(double x, void* params) { return gsl_ran_landau_pdf(x); } /* The cumulative function of the Landau distribution * calculated by numerical integration. */ double landau_cdf(double x, void* params) { // create the integrand gsl_function pdf; pdf.function = &landau_pdf; pdf.params = NULL; // set up the integration double res, err; size_t iter = 500; gsl_integration_workspace* w = gsl_integration_workspace_alloc(iter); // clip values too small if (x < -200) x = -200; // We integrate the pdf in [x, +∞) instead // of (-∞, x] to avoid a singularity and // then return 1 - P. gsl_integration_qagiu( &pdf, // integrand x, // lower bound 1e-10, 1e-6, // abs and rel error iter, // max iteration w, // "workspace" &res, &err); // result, abs error // free the memory gsl_integration_workspace_free(w); return 1 - res; } /* Another wrapper: this time it is needed by * `landau_qdf` to solve the equation: * `landau_cdf(x) = p0` for x */ double landau_cdf_root(double x, void* params) { double p0 = *(double*)params; return p0 - landau_cdf(x, NULL); } /* The quantile function (inverse CDF) of the Landau * distribution calculated by numerical root method. */ double landau_qdf(double p0) { // create function gsl_function cdf; cdf.function = &landau_cdf_root; cdf.params = &p0; // use the Brent method gsl_root_fsolver* s = gsl_root_fsolver_alloc(gsl_root_fsolver_brent); // search interval double low = -1000, // lower value upp = 100000; // upper value gsl_root_fsolver_set(s, &cdf, low, upp); // iterative search size_t iter = 1000; // max iteration int stat = GSL_CONTINUE; for (size_t i=0; stat==GSL_CONTINUE && i