#include "lib.h" #include #include #include #include #include #include /* Process CLI arguments and print usage */ int parser(size_t *N, size_t *n, double *p_max, size_t argc, char **argv, size_t *go) { for (size_t i = 1; i < argc; i++) { if (!strcmp(argv[i], "-n")) *N = atol(argv[++i]); else if (!strcmp(argv[i], "-b")) *n = atol(argv[++i]); else if (!strcmp(argv[i], "-p")) *p_max = atof(argv[++i]); else if (!strcmp(argv[i], "-o")) *go = 1; else { fprintf(stderr, "Usage: %s -[hnbpo]\n", argv[0]); fprintf(stderr, "\t-h\tShow this message.\n"); fprintf(stderr, "\t-n N\tThe number of particles to generate. (default: 50000)\n"); fprintf(stderr, "\t-b N\tThe number of bins of the histogram. (default: 50)\n"); fprintf(stderr, "\t-p PMAX\tThe maximum value of momentum. (default: 10)\n"); fprintf(stderr, "\t-o\tPrint histogram to stdout.\n"); return 0; } } return 1; } int main(int argc, char **argv) { // Set default options. size_t N = 50000; size_t n = 50; double p_max = 10; size_t go = 0; // Get eventual CLI arguments. int res = parser(&N, &n, &p_max, argc, argv, &go); if (go == 0 && res == 1) { printf("Generating histogram with:\n" "%ld points\n" "%ld bins\n" "p_max = %.3f\n\n", N, n, p_max); } else if (res == 0) return EXIT_FAILURE; // Initialize an RNG. gsl_rng_env_setup(); gsl_rng *r = gsl_rng_alloc(gsl_rng_default); /* Generate the angle θ uniformly distributed on a sphere using the * inverse transform: * * θ = acos(1 - 2X) * * where X is a random uniform variable in [0,1), and the module p of * the vector: * * p² = p_v² + p_h² * * uniformly distributed between 0 and p_max. The two components are * then computed as: * * p_v = p⋅cos(θ) * p_h = p⋅sin(θ) * * The histogram is updated this way. * The j-th bin where p_h goes in is given by: * * step = p_max / n * j = floor(p_h / step) * * Thus an histogram was created and a structure containing the number of * entries in each bin and the sum of |p_v| in each of them is created and * filled while generating the events (struct bin). */ struct bin *histo = calloc(n, sizeof(struct bin)); // Some useful variables. double step = p_max / n; struct bin *b; double theta; double p; double p_v; double p_h; size_t j; for (size_t i = 0; i < N; i++) { // Generate the event theta = acos(1 - 2*gsl_rng_uniform(r)); p = p_max * gsl_rng_uniform(r); // Compute the components p_v = p * cos(theta); p_h = p * sin(theta); // Update the histogram j = floor(p_h / step); b = &histo[j]; b -> amo++; b -> sum += fabs(p_v); } /* Compute the mean value of each bin and print it to stodut * together with other useful things to make the histogram. */ if (go == 1) { printf("bins: \t%ld\n", n); printf("step: \t%.5f\n", step); } for (size_t i = 0; i < n; i++) { histo[i].sum = histo[i].sum / histo[i].amo; // Average P_v if (go == 1) printf("\n%.5f", histo[i].sum); }; /* Compare the histogram with the expected function: * * x * log(p_max/x)/arctan(sqrt(p_max^2/x^2 - 1)) * * using the χ² test. */ struct parameters params; params.histo = histo; params.n = n; params.step = step; gsl_function func; func.function = &chi2; func.params = ¶ms; double min_p = p_max - 5; double max_p = p_max + 5; // Initialize minimization double x = p_max; int max_iter = 100; double prec = 1e-7; int status = GSL_CONTINUE; const gsl_min_fminimizer_type *T = gsl_min_fminimizer_brent; gsl_min_fminimizer *s = gsl_min_fminimizer_alloc(T); gsl_min_fminimizer_set(s, &func, x, min_p, max_p); // Minimization for (int iter = 0; status == GSL_CONTINUE && iter < max_iter; iter++) { status = gsl_min_fminimizer_iterate(s); x = gsl_min_fminimizer_x_minimum(s); min_p = gsl_min_fminimizer_x_lower(s); max_p = gsl_min_fminimizer_x_upper(s); status = gsl_min_test_interval(min_p, max_p, 0, prec); } double result = x; double res_chi = chi2(result, ¶ms); if (go == 0) { printf("Results:\n"); printf("χ² = %.3f\n", res_chi); printf("p_max = %.3f\n", result); } /* Compute the second derivative of χ² in its minimum for the result error. * * p_max = α * 2 * (Eᵢ - Oᵢ) * χ² = Σi ────────── * Eᵢ * * ⎛ 2⎞ * ⎜ Oᵢ ⎟ * ∂αχ² = Σi Eᵢ⋅⎜1 - ───⎟⋅∂αE * ⎜ 2⎟ * ⎝ Eᵢ ⎠ * * ⎛ 2 ⎛ 2⎞ ⎞ * ⎜ Oᵢ ⎜ Oᵢ ⎟ ⎟ * ∂²αχ² = Σi ⎜(∂αE)²⋅2⋅─── + ∂²αE ⋅⎜1 - ───⎟ ⎟ * ⎜ 2 ⎜ 2⎟ ⎟ * ⎝ Eᵢ ⎝ Eᵢ ⎠ ⎠ */ double expecto, A, B; double error = 0; for (size_t i = 0; i < n; i++) { x = (i + 0.5) * step; expecto = expected(x, result); A = 2 * pow(exp1d(x, result) * histo[i].sum / expecto, 2); B = exp2d(x, result) * (1 - pow((histo[i].sum / expecto), 2)); error = error + A + B; }; error = 1/error; if (go == 0) printf("ΔP_max = %.3f\n", error); // Check compatibility double t = fabs(result - p_max)/error; double alpha = 1 - erf(t/sqrt(2)); if (go == 0) { printf("\nCompatibility:\n"); printf("t = %.3f\n", t); printf("α = %.3f\n\n", alpha); } // Free memory gsl_min_fminimizer_free(s); gsl_rng_free(r); free(histo); return EXIT_SUCCESS; }