#include #include #include #include /* The Euler-Mascheroni constant is here computed to * arbitrary precision using GMP floating point numbers * with the formula: * * 0 < |γ - U(N)/V(N)| < πexp(-4N) * * with: * * U(N) = Σ_(k = 1)^+∞ (N^k/k!)² *(H(k) - log(N)) * V(N) = Σ_(k = 0)^+∞ (N^k/k!)² * H(k) = Σ_(j = 1)^(k) (1/k), the k-th harmonic number * * If N = 2^p (to simplify the log) to get the result to D * decimal digits we must have 2^(p+1) > D / log(π), which is * satisfied by p = floor(log2(N log(10) + log(π))) - 1. * * The number of series terms needed to reduce the error, due to * to less than 10^-D is α⋅2^p where α is the solution of: * * α log(α) = 3 + α ⇒ α = exp(W(3e) - 1) ≈ 4.97 * * source: http://www.numberworld.org/y-cruncher/internals/formulas.html * */ /* Approximation of the Lambert W(x) function at large values * where x = log(2) 10^(D/2). The expression of x has been * inlined and optimized to avoid overflowing on large D. * * Note: from x>10 this is an overestimate of W(x), which is * good for the application below. * * source: "On the Lambert W function", Corless et al. */ double lambertW_large(size_t digits) { double L1 = log(log(2.0)) + log(10.0)*(double)digits/2.0; double L2 = log(L1); return L1 - L2 + L2/L1 + (L2 - 2)/(2*L1*L1) + L2*(3*L2*L2*L2 - 22*L2*L2 + 36*L2 - 12)/(12*L1*L1*L1*L1); } /* `mpf_log2(z, D)` * calculate log(2) to D decimal places * using the series * * log(2) = Σ_{k=1}^+∞ 1/(k 2^k) * * The error of the n-th partial sum is * estimated as * * Δn = 1/(n(n+2) 2^(n-1)). * * So to fix the first D decimal places * we evaluate up to n terms such that * * Δn < 1/10^D * * Then take the average of the upper and * lower bounds of the series, given by * * Sk + ak/(1 - ak+1/ak) < S < Sk + ak L/(1-L) * * where L = lim k→∞ ak+1/ak = 1/2. */ void mpf_log2(mpf_t rop, size_t digits) { mpf_t sum, term; mpf_inits(sum, term, NULL); fprintf(stderr, "[mpf_log2] decimal digits: %ld\n", digits); /* Compute the number of required terms * A couple of extra digits are added for safety. */ size_t n = 2.0/log(2)*lambertW_large(digits+2); fprintf(stderr, "[mpf_log2] series terms: %ld\n", n); /* Compute the nth partial num */ for (size_t i=1; i<=n; i++) { mpf_set_ui(term, 1); mpf_mul_2exp(term, term, i); mpf_mul_ui(term, term, i); mpf_ui_div(term, 1, term); mpf_add(sum, sum, term); } /* Compute upper/lower bounds */ mpf_t upp, low; mpf_inits(upp, low, NULL); // upp = sum + term mpf_add(upp, sum, term); // low = sum + term * n/(n+2) mpf_mul_ui(low, term, n); mpf_div_ui(low, low, n+2); mpf_add(low, sum, low); /* average the bounds */ mpf_add(sum, low, upp); mpf_div_ui(sum, sum, 2); /* Note: printf() rounds floating points to the number of digits * in an implementation-dependent manner. To avoid printing * (wrongly) rounded digits we increase the count by 1 and hide * the last by overwriting with a space. */ size_t d = digits>50? 50 : digits; gmp_fprintf(stderr, "[mpf_log2] upper bound: %.*Ff\b \n", d+3, upp); gmp_fprintf(stderr, "[mpf_log2] lower bound: %.*Ff\b \n", d+3, low); gmp_fprintf(stderr, "[mpf_log2] log(2)=%.*Ff\b \n", d+1, sum); // return sum mpf_set(rop, sum); // free memory mpf_clears(sum, term, NULL); mpf_clears(upp, low, NULL); } /* `mpf_gamma(rop, digits)` computes γ to `digits` decimal places * using the above described algorithm and set results to `rop`. */ void mpf_gamma(mpf_t rop, size_t digits) { /* The number N=2^p is fixed by requiring that the error * is smaller than the precision/digits required: * * π exp(-4N) < 10^(-D) * * The first power of 2 solving the constraint is * * p = floor(log2(N log(10) + log(π))) - 1 */ unsigned int p = log2(digits * log(10.0) + log(M_PI)) - 1; fprintf(stderr, "[mpf_gamma] p: %d\n", p); fprintf(stderr, "[mpf_gamma] log2(digits): %d\n", (int)log2(digits)); /* The number of iterations needed to reduce the error, due to * ignoring the C/B² term, to less than 10^-D is α⋅2^p where α * is the solution of: * * α log(α) = 1 + α ⇒ α = exp(W(3e) - 1) ≈ 4.97 * */ size_t kmax = 3.59 * (1 << p); fprintf(stderr, "[mpf_gamma] iterations: %ld\n", kmax); // initialise variables mpf_t A, B, a, b, stop, temp; mpf_inits(A, B, a, b, stop, temp, NULL); // A = a0 = -log(2^p) = -plog(2) mpf_log2(a, digits); mpf_mul_ui(a, a, p); mpf_neg(a, a); mpf_set(A, a); // B = b0 = 1 mpf_set_si(b, 1); mpf_set_si(B, 1); for(size_t k = 1; k <= kmax; k++) { // bk = bk-1 (n/k)^2 mpf_mul_2exp(b, b, 2*p); mpf_div_ui(b, b, k); mpf_div_ui(b, b, k); // ak = ak-1 (n/k)^2 mpf_mul_2exp(a, a, 2*p); mpf_div_ui(a, a, k); mpf_div_ui(a, a, k); // ak = ak - bk/k mpf_div_ui(temp, b, k); mpf_add(a, a, temp); // A += ak, B += bk mpf_add(A, A, a); mpf_add(B, B, b); } // return A/B mpf_div(rop, A, B); // free memory mpf_clears(A, B, a, b, temp, NULL); } int main(int argc, char** argv) { /* if no argument is given, show the usage */ if (argc != 2) { fprintf(stderr, "usage: %s D\n", argv[0]); fprintf(stderr, "Computes γ up to D decimal places.\n"); return EXIT_FAILURE; } /* Compute the required precision, ie. the number * of bits of the mantissa. This can be found from: * * 10^d = 2^b ⇒ b = dlog2(10) */ size_t digits = atol(argv[1]); size_t prec = digits * log2(10); fprintf(stderr, "[main] precision: %gbit\n", (double)prec); /* Set the default precision. This affects the mantissa * size of all mpf_t variables initialised from now on. */ mpf_set_default_prec(prec + 64); mpf_t y; mpf_init(y); mpf_gamma(y, digits); // again, trick to avoid rounding gmp_printf("%.*Ff\b \n", digits+1, y); mpf_clear(y); return EXIT_SUCCESS; }