# Goal ## Goal Construct six statistical tests to assert whether a sample comes from a Landau distribution . . . - Generate a sample $L$ from a Landau PDF - Generate a sample $M$ from a Moyal PDF . . . $H_0$: sample following Landau PDF - can we accept $H_0$ for $L$? - can we reject $H_0$ for $M$? ## Why Moyal? The Landau and Moyal PDFs are really similar. Historically, the latter was utilized as an approximation of the former. \includegraphics<1>[height=5.5cm]{images/moyal-photo.jpg} \includegraphics<2>[height=5.5cm]{images/mondau-photo.jpg} \includegraphics<3>[height=5.5cm]{images/landau-photo.jpg} ## Two similar distributions :::: {.columns} ::: {.column width=50%} Landau PDF $$ L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty} dt \, e^{-t \ln(t) -xt} \sin (\pi t) $$ ::: ::: {.column width=50%} Moyal PDF $$ M(x) = \frac{1}{\sqrt{2 \pi}} \exp \left[ - \frac{1}{2} \left( x + e^{- x} \right) \right] $$ ::: :::: \vspace{1em} :::: {.columns} ::: {.column width=50%} ![](images/landau-pdf.pdf) ::: ::: {.column width=50%} ![](images/moyal-pdf.pdf) ::: :::: ## Two similar distributions ![](images/both-pdf.pdf) ## Statistical tests . . . - **Properties test** compatibility between expected and observed PDF properties . . . - **Kolmogorov - Smirnov test** compatibility between expected and empirical CDF . . . - **Trapani test** test for finite or infinite moments