# Kolmogorov - Smirnov test ## KS Quantify distance between expected and observed CDF . . . KS statistic: $$ D_N = \text{sup}_x |F_N(x) - F(x)| $$ - $F(x)$ is the expected CDF - $F_N(x)$ is the empirical CDF of $N$ sampled points - sort points in ascending order - number of points preceding the point normalized by $N$ ## KS $H_0$: points sampled according to $F(x)$ . . . If $H_0$ is true: - $\sqrt{N}D_N \xrightarrow{N \rightarrow + \infty} K$ Kolmogorov distribution with CDF: $$ P(K \leqslant K_0) = 1 - p = \frac{\sqrt{2 \pi}}{K_0} \sum_{j = 1}^{+ \infty} e^{-(2j - 1)^2 \pi^2 / 8 K_0^2} $$ . . . a $p$-value can be computed - At 95% confidence level, $H_0$ cannot be disproved if $p > 0.05$ # Samples results ## Samples results $N = 50000$ sampled points . . . Landau sample: :::: {.columns} ::: {.column width=50%} - $D = 0.004$ - $p = 0.379$ ::: ::: {.column width=50%} $$ \hence \text{Compatible!} $$ ::: :::: \vspace{10pt} . . . Moyal sample: :::: {.columns} ::: {.column width=50%} - $D = 0.153$ - $p = 0.000$ ::: ::: {.column width=50%} $$ \hence \text{Not compatible!} $$ ::: ::::