# Moyal distribution ## Moyal PDF {.b} :::: {.columns align=center} ::: {.column width=50%} Standard form: $$ M(z) = \frac{1}{\sqrt{2 \pi}} \exp \left[ - \frac{1}{2} \left( z + e^{-z} \right) \right] $$ . . . More generally: - location parameter $\mu$ - scale parameter $\sigma$ $$ M_{\mu \sigma}(x) = \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[ - \frac{1}{2} \left( \frac{x - \mu}{\sigma} + e^{-\frac{x - \mu}{\sigma}} \right) \right] $$ ::: ::: {.column width=50%} ![](images/moyal-pdf.pdf) ::: :::: ## Moyal CDF The CDF $F_M(x)$ can be derived by direct integration: $$ F_M(x) = \int\limits_{- \infty}^x dy \, M(y) = \frac{1}{\sqrt{2 \pi}} \int\limits_{- \infty}^x dy \, e^{- \frac{y}{2}} e^{- \frac{1}{2} e^{-y}} $$ . . . after a bit of math, one finally gets: $$ F_M(x) = 1 - \text{erf} \left( \frac{e^{- \frac{x}{2}}}{\sqrt{2}} \right) $$ ## Moyal QDF The quantile (CDF\textsuperscript{-1}) is found solving for $x$: $$ y = 1 - \text{erf} \left( \frac{e^{- \frac{x}{2}}}{\sqrt{2}} \right) $$ hence: $$ Q_M(y) = -2 \ln \left[ \sqrt{2} \, \text{erf}^{-1} (1 - y) \right] $$ ## Moyal median Defined by $F(m) = \frac{1}{2}$ or $m = Q \left( \frac{1}{2} \right)$: \begin{align*} M(z) &\thus m_M\ex = -2 \ln \left[ \sqrt{2} \, \text{erf}^{-1} \left( \frac{1}{2} \right) \right] \\ M_{\mu \sigma}(x) &\thus m_M\ex = \mu -2 \sigma \ln \left[ \sqrt{2} \, \text{erf}^{-1} \left( \frac{1}{2} \right) \right] \end{align*} \setbeamercovered{} \begin{center} \begin{tikzpicture}[overlay] \pause \node [opacity=0.5, xscale=0.55, yscale=0.4 ] at (1.85,1.1) {\includegraphics{images/high.png}}; \end{tikzpicture} \end{center} \setbeamercovered{transparent} ## Moyal mode Peak of the PDF: $$ \partial_x M(x) = \partial_x \left( \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} \left( x + e^{-x} \right)} \right) = \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} \left( x + e^{-x} \right)} \left( -\frac{1}{2} \right) \left( 1 - e^{-x} \right) $$ \begin{align*} \partial_x M(z) = 0 &\thus \mu_M\ex = 0 \\ \partial_x M_{\mu \sigma}(x) = 0 &\thus \mu_M\ex = \mu \\ \end{align*} \setbeamercovered{} \begin{center} \begin{tikzpicture}[overlay] \pause \node [opacity=0.5, xscale=0.18, yscale=0.25 ] at (2.4,1.8) {\includegraphics{images/high.png}}; \end{tikzpicture} \end{center} \setbeamercovered{transparent} ## Moyal FWHM We need to compute the maximum value: $$ M(\mu_M\ex) = \frac{1}{\sqrt{2 \pi e}} \thus M(x_{\pm}) = \frac{1}{\sqrt{8 \pi e}} $$ . . . which leads to: $$ x_{\pm} + e^{-x_{\pm}} = 1 + 2 \ln(2) \thus \begin{cases} x_+ = 1 + 2 \ln(2) + W_0 \left( - \frac{1}{4 e} \right) \\ x_- = 1 + 2 \ln(2) + W_{-1} \left( - \frac{1}{4 e} \right) \end{cases} $$ ## Moyal FWHM $$ x_+ - x_- = 3.590806098... = a $$ \begin{align*} M(z) &\thus w_M^{\text{exp}} = a \\ M_{\mu \sigma}(x) &\thus w_M^{\text{exp}} = \sigma \cdot a \\ \end{align*} \setbeamercovered{} \begin{center} \begin{tikzpicture}[overlay] \pause \node [opacity=0.5, xscale=0.2, yscale=0.25 ] at (1.9,1.9) {\includegraphics{images/high.png}}; \end{tikzpicture} \end{center} \setbeamercovered{transparent}