# Sample statistics ## Sample statistics How to estimate sample median, mode and FWHM? . . . - \only<3>\strike{Binning data $\hence$ depends wildly on bin-width} . . . - Alternative solutions - Robust estimators - Kernel density estimation ## Sample median :::: {.columns align=bottom} ::: {.column width=50%} $$ F(m) = \frac{1}{2} $$ \vspace{20pt} . . . - Sort points in ascending order . . . - Middle element if odd Average of the two central elements if even ::: ::: {.column width=50%} ![](images/median.pdf) ::: :::: \setbeamercovered{} \begin{center} \begin{tikzpicture}[remember picture, >=Stealth] % line \draw [line width=3, ->, cyclamen] (-5,0) -- (5,0); \node [right] at (5,0) {$x$}; % points \draw [yellow!50!black, fill=yellow] (-4.6,-0.1) rectangle (-4.8,0.1); \draw [yellow!50!black, fill=yellow] (-4,-0.1) rectangle (-4.2,0.1); \draw [yellow!50!black, fill=yellow] (-3.3,-0.1) rectangle (-3.5,0.1); \draw [yellow!50!black, fill=yellow] (-2.3,-0.1) rectangle (-2.5,0.1); \draw [yellow!50!black, fill=yellow] (-0.6,-0.1) rectangle (-0.8,0.1); \draw [yellow!50!black, fill=yellow] (-0.1,-0.1) rectangle (0.1,0.1); \draw [yellow!50!black, fill=yellow] (1.1,-0.1) rectangle (1.3,0.1); \draw [yellow!50!black, fill=yellow] (2,-0.1) rectangle (2.2,0.1); \draw [yellow!50!black, fill=yellow] (2.7,-0.1) rectangle (2.9,0.1); \draw [yellow!50!black, fill=yellow] (4,-0.1) rectangle (4.2,0.1); \pause % nodes \node [below] at (-4.7,-0.1) {1}; \node [below] at (-4.1,-0.1) {2}; \node [below] at (-3.4,-0.1) {3}; \node [below] at (-2.4,-0.1) {4}; \node [below] at (-0.7,-0.1) {5}; \node [below] at ( 0 ,-0.1) {6}; \node [below] at ( 1.2,-0.1) {7}; \node [below] at ( 2.1,-0.1) {8}; \node [below] at ( 2.8,-0.1) {9}; \node [below] at ( 4.1,-0.1) {10}; \pause \draw [ultra thick] (-0.35,0.7) -- (-0.35,-0.7); \end{tikzpicture} \end{center} \setbeamercovered{transparent} ## Sample mode Half Sample Mode[@robertson74] - Find the smallest interval containing half points - Repeat - If the sample has less than three points, take average . . . \setbeamercovered{} \begin{center} \begin{tikzpicture}[remember picture, >=Stealth] % line \draw [line width=3, ->, cyclamen] (-5,0) -- (5,0); \node [right] at (5,0) {$x$}; % points \draw [blue!50!black, fill=blue] (-4.6,-0.1) rectangle (-4.8,0.1); \draw [blue!50!black, fill=blue] (-4,-0.1) rectangle (-4.2,0.1); \draw [blue!50!black, fill=blue] (-3.3,-0.1) rectangle (-3.5,0.1); \draw [blue!50!black, fill=blue] (-2.3,-0.1) rectangle (-2.5,0.1); \draw [blue!50!black, fill=blue] (-0.6,-0.1) rectangle (-0.8,0.1); \draw [blue!50!black, fill=blue] (-0.1,-0.1) rectangle (0.1,0.1); \draw [blue!50!black, fill=blue] (1.1,-0.1) rectangle (1.3,0.1); \draw [blue!50!black, fill=blue] (2,-0.1) rectangle (2.2,0.1); \draw [blue!50!black, fill=blue] (2.7,-0.1) rectangle (2.9,0.1); \draw [blue!50!black, fill=blue] (4,-0.1) rectangle (4.2,0.1); % future nodes \node at (-1,-0.3) (1a) {}; \node at (3.1,0.3) (1b) {}; \node at (0.9,-0.3) (2a) {}; \node at (1.8,-0.3) (3a) {}; % result nodes \node at (2.45,-0.7) (f1) {}; \node at (2.45,0.7) (f2) {}; \end{tikzpicture} \end{center} . . . \begin{center} \begin{tikzpicture}[remember picture, overlay] % region \draw [orange, fill=orange, opacity=0.5] (1a) rectangle (1b); \end{tikzpicture} \end{center} . . . \begin{center} \begin{tikzpicture}[remember picture, overlay] % region \draw [orange, fill=orange, opacity=0.5] (2a) rectangle (1b); \end{tikzpicture} \end{center} . . . \begin{center} \begin{tikzpicture}[remember picture, overlay] % region \draw [orange, fill=orange, opacity=0.5] (3a) rectangle (1b); \end{tikzpicture} \end{center} . . . \begin{center} \begin{tikzpicture}[remember picture, overlay] % region \draw [cyclamen, ultra thick] (f1) -- (f2); \end{tikzpicture} \end{center} ## Sample FWHM $$ \text{FWHM} = x_+ - x_- \with L(x_{\pm}) = \frac{L_{\text{max}}}{2} $$ \setbeamercovered{transparent} . . . **Kernel Density Estimation** :::: {.columns} ::: {.column width=50% .c} - empirical PDF construction: $$ f_\varepsilon(x) = \frac{1}{N\varepsilon} \sum_{i = 1}^N G \left( \frac{x-x_i}{\varepsilon} \right) $$ The parameter $\varepsilon$ controls the strength of the smoothing ::: ::: {.column width=50%} \setbeamercovered{} \begin{center} \begin{tikzpicture} % points \draw [blue!50!black, fill=blue] (-2,-0.1) rectangle (-1.8,0.1); \draw [blue!50!black, fill=blue] (-0.1,-0.1) rectangle (0.1,0.1); \draw [blue!50!black, fill=blue] (1.3,-0.1) rectangle (1.5,0.1); \draw [blue!50!black, fill=blue] (0.7,-0.1) rectangle (0.9,0.1); \pause % lines \draw [cyclamen, dashed] (-1.9,0.1) -- (-1.9,1); \draw [cyclamen, dashed] (0,0.1) -- (0,1); \draw [cyclamen, dashed] (1.4,0.1) -- (1.4,1); \draw [cyclamen, dashed] (0.8,0.1) -- (0.8,1); % Gaussians \draw[domain=-3.4:-0.4, smooth, variable=\x, cyclamen, very thick] plot ({\x}, {exp(-(\x + 1.9)*(\x + 1.9)) + 0.1}); \draw[domain=-1.5:1.5, smooth, variable=\x, cyclamen, very thick] plot ({\x}, {exp(-\x*\x + 0.1}); \draw[domain=-0.1:2.9, smooth, variable=\x, cyclamen, very thick] plot ({\x}, {exp(-(\x - 1.4)*(\x - 1.4)) + 0.1}); \draw[domain=-0.7:2.3, smooth, variable=\x, cyclamen, very thick] plot ({\x}, {exp(-(\x - 0.8)*(\x - 0.8)) + 0.1}); \pause % sum \draw [fill=white, white, opacity=0.5] (-3.5,0.1) rectangle (3,1.3); \draw[domain=-3.4:3.4, smooth, variable=\x, blue, very thick] plot ({\x}, {exp(-(\x + 1.9)*(\x + 1.9)) + exp(-\x*\x) + exp(-(\x - 1.4)*(\x - 1.4)) + exp(-(\x - 0.8)*(\x - 0.8)) + 0.1}); \end{tikzpicture} \end{center} \setbeamercovered{transparent} ::: :::: ## Sample FWHM Silverman's rule of thumb [@silver86]: $$ \varepsilon = 0.88 \, S_N \left( \frac{d + 2}{4}N \right)^{-1/(d + 4)} $$ with: - $S_N$ is the sample standard deviation - $d$ is number of dimensions ($d = 1$) . . . Numerical minimization (Brent) for $\quad f_{\varepsilon_{\text{max}}}$ Numerical root finding (Brent) for $\quad f_{\varepsilon}(x_{\pm}) = \frac{f_{\varepsilon_{\text{max}}}}{2}$ ## Sample FWHM ![](images/kde.pdf)