#include #include #include #include #include #include #include "landau.h" #include "tests.h" #include "bootstrap.h" /* Here we generate random numbers in a uniform * range and by using the quantile we map them * to a Landau distribution. Then we generate an * histogram to check the correctness. */ int main(int argc, char** argv) { // initialize an RNG gsl_rng_env_setup(); gsl_rng *r = gsl_rng_alloc(gsl_rng_default); // prepare histogram size_t samples = 100000; double* sample = calloc(samples, sizeof(double)); size_t bins = 40; double min = -10; double max = 10; gsl_histogram* hist = gsl_histogram_alloc(bins); gsl_histogram_set_ranges_uniform(hist, min, max); /* Sample generation * * Sample points from the Landau * distribution and fill the histogram. */ fprintf(stderr, "# Sampling\n"); fprintf(stderr, "generating %ld points... ", samples); double x; for(size_t i=0; i D) D = d; } fprintf(stderr, "\n\n# Kolmogorov-Smirnov test\n"); double beta = kolmogorov_cdf(D, samples); // print the results fprintf(stderr, "\n## Results\n"); fprintf(stderr, "D: %f\n", D); fprintf(stderr, "α: %g\n", 1 - beta); /* Mode comparison * * Compute the half-sample mode by bootstrapping * and compare the result with the value found by * numerical maximisation of the PDF. */ fprintf(stderr, "\n\n# Mode comparison\n"); /* A structure used by the optimisation * routines in numeric_mode and others * functions below. */ gsl_function pdf; pdf.function = &landau_pdf; pdf.params = NULL; double mode_e = numeric_mode(min, max, &pdf, 1); uncert mode_o = bootstrap_mode(r, sample, samples, 100); // print the results fprintf(stderr, "\n## Results\n"); fprintf(stderr, "expected mode: %.7f\n", mode_e); fprintf(stderr, "observed mode: %.4f±%.4f\n", mode_o.n, mode_o.s); // t-test double t = fabs(mode_e - mode_o.n)/mode_o.s; double p = 1 - erf(t/sqrt(2)); fprintf(stderr, "\n## t-test\n"); fprintf(stderr, "t=%.3f\n", t); fprintf(stderr, "p=%.3f\n", p); /* FWHM comparison * * Estimate the FWHM of the sample by constructing * an empirical PDF via a KDE method and applying * the definition on it (numerical solution of * `f(x) = max/2` ⇒ x₁-x₀). This is again bootstrapped * to estimate the standard errors and compared against * the numerical value of FWHM from the true PDF. */ fprintf(stderr, "\n\n# FWHM comparison\n"); double fwhm_e = numeric_fwhm(min, max, &pdf, 1); uncert fwhm_o = bootstrap_fwhm(r, min, max, sample, samples, 100); // print the results fprintf(stderr, "\n## Results\n"); fprintf(stderr, "expected fwhm: %.7f\n", fwhm_e); fprintf(stderr, "observed fwhm: %.4f±%.4f\n", fwhm_o.n, fwhm_o.s); // t-test t = fabs(fwhm_e - fwhm_o.n)/fwhm_o.s; p = 1 - erf(t/sqrt(2)); fprintf(stderr, "\n## t-test\n"); fprintf(stderr, "t=%.3f\n", t); fprintf(stderr, "p=%.3f\n", p); /* Median comparison * * Compute the median of the sample by bootstrapping * it and comparing it with the QDF(1/2). */ fprintf(stderr, "\n\n# Median comparison\n"); double med_e = landau_qdf(0.5); uncert med_o = bootstrap_median(r, sample, samples, 100); // print the results fprintf(stderr, "\n## Results\n"); fprintf(stderr, "expected median: %.7f\n", med_e); fprintf(stderr, "observed median: %.4f±%.4f\n", med_o.n, med_o.s); // t-test t = fabs(med_e - med_o.n)/med_o.s; p = 1 - erf(t/sqrt(2)); fprintf(stderr, "\n## t-test\n"); fprintf(stderr, "t=%.3f\n", t); fprintf(stderr, "p=%.3f\n", p); // clean up and exit gsl_histogram_free(hist); gsl_rng_free(r); free(sample); return EXIT_SUCCESS; }