# PDF The Moyal distribution is defined as: $$ M(x) = \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} \left[ x + e^{-x} \right]} $$ More generally, it is defined with the location and scale parameters $\mu$ and $\sigma$ such as: $$ x \rightarrow \frac{x - \mu}{\sigma} $$ # CDF The cumulative distribution function $\mathscr{M}(x)$ can be derived from the pdf $M(x)$ integrating: $$ \mathscr{M}(x) = \frac{1}{\sqrt{2 \pi}} \int\limits_{- \infty}^x dy \, M(y) = \frac{1}{\sqrt{2 \pi}} \int\limits_{- \infty}^x dy \, e^{- \frac{1}{2}} e^{- \frac{1}{2} e^{-y}} $$ with the change of variable: \begin{align} z = \frac{1}{\sqrt{2}} e^{-\frac{y}{2}} &\thus \frac{dz}{dy} = \frac{-1}{2 \sqrt{2}} e^{-\frac{y}{2}} \\ &\thus dy = -2 \sqrt{2} e^{\frac{y}{2}} dz \end{align} hence, the limits of the integral become: \begin{align} y \rightarrow - \infty &\thus z \rightarrow + \infty \\ y = x &\thus z = \\\frac{1}{\sqrt{2}} e^{-\frac{x}{2}} = f(x) \end{align} and the CDF can be rewritten as: $$ \mathscr{M}(x) = \frac{1}{2 \pi} \int\limits_{+ \infty}^{f(x)} dz \, (- 2 \sqrt{2}) e^{\frac{y}{2}} e^{- \frac{y}{2}} e^{- z^2} = \frac{-2 \sqrt{2}}{\sqrt{2 \pi}} \int\limits_{+ \infty}^{f(x)} dz e^{- z^2} $$ since the `erf` is defines as: $$ $$