# MC simulations ## In summary ----------------------------------------------------- Landau Moyal ----------------- ----------------- ----------------- median $m_L\ex$ $m_M\ex (μ, σ)$ mode $\mu_L\ex$ $\mu_M\ex (μ)$ FWHM $w_L\ex$ $w_M\ex (σ)$ ----------------------------------------------------- ## Moyal parameters A $M(x)$ similar to $L(x)$ can be found by imposing: \vspace{15pt} - equal mode $$ \mu_M\ex = \mu_L\ex \approx −0.22278298... $$ . . . - equal width $$ w_M\ex = w_L\ex = \sigma \cdot a $$ $$ \implies \sigma_M \approx 1.1191486... $$ ## Moyal parameters :::: {.columns} ::: {.column width=50%} ![](images/both-pdf-bef.pdf) ::: ::: {.column width=50%} ![](images/both-pdf-aft.pdf) ::: :::: ## Moyal parameters This leads to more different medians: \begin{align*} m_M = 0.787... \thus &m_M = 0.658... \\ &m_L = 1.355... \end{align*} ## Compatibility test Comparing results: $$ p = 1 - \text{erf} \left( \frac{t}{\sqrt{2}} \right)\ \with t = \frac{|x\ex - x\ob|}{\sqrt{\sigma\ex^2 + \sigma\ob^2}} $$ - $x\ex$ and $x\ob$ are the expected and observed values - $\sigma\ex$ and $\sigma\ob$ are their absolute errors . . . At 95% confidence level, the values are compatible if: $$ p > 0.05 $$