#include #include #include "common.h" #include "likelihood.h" #include "chisquared.h" #include #include /* Options for the program */ struct options { int show_hist; // whether to print the 2D histogram int only_hist; // whether to skip the minimisations size_t num_events; // number of generated events size_t bins_theta; // number of bins for θ size_t bins_phi; // number of bins for φ }; int main(int argc, char **argv) { /* Set default options */ struct options opts; opts.num_events = 50000; opts.show_hist = 0; opts.only_hist = 0; opts.bins_theta = 30; opts.bins_phi = 60; /* Process CLI arguments */ for (size_t i = 1; i < argc; i++) { if (!strcmp(argv[i], "-i")) opts.show_hist = 1; else if (!strcmp(argv[i], "-I")) opts.only_hist = 1; else if (!strcmp(argv[i], "-n")) opts.num_events = atol(argv[++i]); else if (!strcmp(argv[i], "-t")) opts.bins_theta = atol(argv[++i]); else if (!strcmp(argv[i], "-p")) opts.bins_phi = atol(argv[++i]); else { fprintf(stderr, "Usage: %s -[hiIntp]\n", argv[0]); fprintf(stderr, "\t-h\tShow this message.\n"); fprintf(stderr, "\t-i\tPrint the histogram to stdout.\n"); fprintf(stderr, "\t-I\tPrint *only* the histogram.\n"); fprintf(stderr, "\t-n N\tThe number of events to generate. (default: 50000)\n"); fprintf(stderr, "\t-t N\tThe number of θ bins. (default: 30)\n"); fprintf(stderr, "\t-p N\tThe number of φ bins. (default: 60)\n"); return EXIT_FAILURE; } } /* Initialize an RNG. */ gsl_rng_env_setup(); gsl_rng *r = gsl_rng_alloc(gsl_rng_default); /* Initialise the sample data structure with * the number of events and allocate an array * for the events. */ struct sample s = { opts.num_events, NULL }; s.events = calloc(s.size, sizeof(struct event)); /* Prepare a 2D histogram of the sample * with 30x60 bins. */ gsl_histogram2d* hist = gsl_histogram2d_alloc(opts.bins_theta, opts.bins_phi); // set the ranges θ∈[0, π] and φ∈[0, 2π] gsl_histogram2d_set_ranges_uniform(hist, 0,M_PI, 0,2*M_PI); /* F(θ.φ) parameters we will generate * a sample with, and later try to recover. * Note: for this choice max F(θ,φ) ≈ 0.179. */ gsl_vector *def_par = gsl_vector_alloc(3); gsl_vector_set(def_par, 0, 0.65); // α gsl_vector_set(def_par, 1, 0.06); // β gsl_vector_set(def_par, 2, -0.18); // γ /* Generate the points (θ, φ) on the unit sphere * using the inverse transform: * θ = acos(1 - 2X) * φ = 2πY * where X,Y are random uniform variables in [0,1). * This ensures that θ,φ are uniformly distributed, then we * proceed to reject the events as follow: * 1. generate a y ∈ [0, max F(θ,φ)] uniformly * 2. reject the sample if y > F(θ,φ) else save it. */ fputs("# event sampling\n\n", stderr); fprintf(stderr, "generating %ld events...", opts.num_events); struct event *e; // for (size_t i = 0; i < s.size; i++){ // e = &s.events[i]; // do { // e->th = acos(1 - 2*gsl_rng_uniform(r)); // e->ph = 2 * M_PI * gsl_rng_uniform(r); // } while(0.2 * gsl_rng_uniform(r) > distr(def_par, e)); for (size_t i = 0; i < s.size; i++){ e = &s.events[i]; e->th = acos(1 - 2*gsl_rng_uniform(r)); e->ph = 2 * M_PI * gsl_rng_uniform(r); // update the histogram gsl_histogram2d_increment(hist, e->th, e->ph); } fputs("done\n", stderr); // print histogram to stdout if (opts.show_hist || opts.only_hist) { fputs("\n# histogram\n", stderr); /* Print the bins on the first line: * this is needed by plot.py to make a * 2D histogram plot. */ fprintf(stdout, "%ld %ld\n", opts.bins_theta, opts.bins_phi); gsl_histogram2d_fprintf(stdout, hist, "%g", "%g"); } if (!opts.only_hist) { /* Estimate the parameters α,β,γ by * the maximum likelihood method. */ min_result like = maxLikelihood(&s); /* Estimate the parameters α,β,γ by * a minimum χ² method. */ struct hist data; data.h = hist; data.n = s.size; min_result chi2 = minChiSquared(data); /* Compare the results with the original ones * and check whether they are compatible. */ fputs("\n# vector decay compatibility\n", stderr); fputs("\n## likelihood results\n\n", stderr); compatibility(def_par, like); fputs("\n## χ² results\n\n", stderr); compatibility(def_par, chi2); /* Test the isotropic decay hypothesys * with the χ² results */ fputs("\n# isotropic hypotesys\n\n", stderr); /* If the decay is isotropic then F = 1/4π. * Solving for α,β,γ yields α=1/3,β=γ=0. */ gsl_vector *iso_par = gsl_vector_alloc(3); gsl_vector_set(iso_par, 0, 0.33); // α gsl_vector_set(iso_par, 1, 0.00); // β gsl_vector_set(iso_par, 2, 0.00); // γ compatibility(iso_par, chi2); // free memory min_result_free(like); min_result_free(chi2); }; // free memory gsl_rng_free(r); free(s.events); gsl_histogram2d_free(hist); gsl_vector_free(def_par); return EXIT_SUCCESS; }