#include "lib.h" #include #include #include #include #include #include // Process CLI arguments. // int parser(size_t *N, size_t *n, double *p_max, char argc, char **argv, size_t *go) { for (size_t i = 1; i < argc; i++) { if (!strcmp(argv[i], "-n")) *N = atol(argv[++i]); else if (!strcmp(argv[i], "-b")) *n = atol(argv[++i]); else if (!strcmp(argv[i], "-p")) *p_max = atof(argv[++i]); else if (!strcmp(argv[i], "-o")) *go = 1; else { fprintf(stderr, "Usage: %s -[hnbpo]\n", argv[0]); fprintf(stderr, "\t-h\tShow this message.\n"); fprintf(stderr, "\t-n N\tThe number of particles to generate. (default: 50000)\n"); fprintf(stderr, "\t-b N\tThe number of bins of the histogram. (default: 50)\n"); fprintf(stderr, "\t-p PMAX\tThe maximum value of momentum. (default: 10)\n"); fprintf(stderr, "\t-o\tPrint histogram to stdout.\n"); return 0; } } return 1; } int main(int argc, char **argv) { // Set default options. // size_t N = 50000; size_t n = 50; double p_max = 10; size_t go = 0; // Get eventual CLI arguments. // int res = parser(&N, &n, &p_max, argc, argv, &go); if (go == 0 && res == 1) { printf("\nGenerating histogram with:\n" "%ld points\n" "%ld bins\n" "p_max = %.3f\n\n", N, n, p_max); } else if (res == 0) return EXIT_FAILURE; // printf("step: \t%.5f\n", step); // Initialize an RNG. // gsl_rng_env_setup(); gsl_rng *r = gsl_rng_alloc(gsl_rng_default); // Generate the angle θ uniformly distributed on a sphere using the // inverse transform: // // θ = acos(1 - 2X) // // where X is a random uniform variable in [0,1), and the module p of // the vector: // // p² = p_v² + p_h² // // uniformly distributed between 0 and p_max. The two components are // then computed as: // // p_v = p⋅cos(θ) // p_h = p⋅sin(θ) // // The histogram is updated this way. // The j-th bin where p_h goes in is given by: // // step = p_max / n // j = floor(p_h / step) // // Thus an histogram was created and a structure containing the number of // entries in each bin and the sum of |p_v| in each of them is created and // filled while generating the events (struct bin). // struct bin *histo = calloc(n, sizeof(struct bin)); // Some useful variables. // double step = p_max / n; struct bin *b; double theta; double p; double p_v; double p_h; size_t j; for (size_t i = 0; i < N; i++) { // Generate the event. // theta = acos(1 - 2*gsl_rng_uniform(r)); p = p_max * gsl_rng_uniform(r); // Compute the components. // p_v = p * cos(theta); p_h = p * sin(theta); // Update the histogram. // j = floor(p_h / step); b = &histo[j]; b -> amo++; b -> sum += fabs(p_v); } // Compute the mean value of each bin and print it to stodut // together with other useful things to make the histogram. // if (go == 1) { printf("bins: \t%ld\n", n); printf("step: \t%.5f\n", step); } for (size_t i = 0; i < n; i++) { histo[i].sum = histo[i].sum / histo[i].amo; // Average P_v if (go == 1) printf("\n%.5f", histo[i].sum); }; // Compare the histigram with the expected function: // // x * log(p_max/x)/arctan(sqrt(p_max^2/x^2 - 1)) // // using the χ² test. // struct parameters params; params.histo = histo; params.n = n; params.step = step; gsl_function func; func.function = &chi2; func.params = ¶ms; double min_p = p_max - 5; double max_p = p_max + 5; // Initialize minimization. // double x = p_max; int max_iter = 100; double prec = 1e-7; int status = GSL_CONTINUE; const gsl_min_fminimizer_type *T = gsl_min_fminimizer_brent; gsl_min_fminimizer *s = gsl_min_fminimizer_alloc(T); gsl_min_fminimizer_set(s, &func, x, min_p, max_p); // Minimization. // for (int iter = 0; status == GSL_CONTINUE && iter < max_iter; iter++) { status = gsl_min_fminimizer_iterate(s); x = gsl_min_fminimizer_x_minimum(s); min_p = gsl_min_fminimizer_x_lower(s); max_p = gsl_min_fminimizer_x_upper(s); status = gsl_min_test_interval(min_p, max_p, 0, prec); } double result = x; double res_chi = chi2(result, ¶ms); if (go == 0) { printf("Results:\n"); printf("χ² = %.3f\n", res_chi); printf("p_max = %.3f\n", result); } // Compute the second derivative of χ² in its minimum for the result error. // // p_max = α // // (Ei - Oi)² // χ² = Σi ---------- // Ei // // / Oi² \ // ∂αχ² = Σi | 1 - --- | ∂αE // \ Ei² / // // / Oi² / Oi² \ \ // ∂²αχ² = Σi | (∂αE)² 2 --- + ∂²αE | 1 - --- | | // \ Ei³ \ Ei² / / // double expecto, A, B; double error = 0; for (size_t i = 0; i < n; i++) { x = (i + 0.5) * step; expecto = expected(x, result); A = 2 * pow(exp1d(x, result) * histo[i].sum / expecto, 2); B = exp2d(x, result) * (1 - pow((histo[i].sum / expecto), 2)); error = error + A + B; }; error = 1/error; if (go == 0) printf("ΔP_max = %.3f\n", error); // Check compatibility // double t = fabs(result - p_max)/error; double alpha = 1 - erf(t/sqrt(2)); if (go == 0) { printf("\nCompatibility:\n"); printf("t = %.3f\n", t); printf("α = %.3f\n\n", alpha); } // Free memory. // gsl_min_fminimizer_free(s); gsl_rng_free(r); free(histo); return EXIT_SUCCESS; }