# Goal ## Goal What? - Generate a sample of points from a Moyal PDF - Prove it truly comes from it and not from a Landau PDF How? - Applying some hypothesis testings ## Why? The Landau and Moyal PDFs are really similar. Historically, the latter distribution was utilized in the approximation of the Landau Distribution. :::: {.columns} ::: {.column width=33%} \centering ![](images/moyal-photo.jpg){height=130pt} ::: ::: {.column width=33%} \centering ![](images/mondau-photo.jpg){height=130pt} ::: ::: {.column width=33%} \centering ![](images/landau-photo.jpg){height=130pt} ::: :::: ## Two similar distributions :::: {.columns .c} ::: {.column width=50%} \begin{center} Landau PDF $$ L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty} dt \, e^{-t \ln(t) -xt} \sin (\pi t) $$ \end{center} ::: ::: {.column width=50%} \begin{center} Moyal PDF $$ M(x) = \frac{1}{\sqrt{2 \pi}} \exp \left[ - \frac{1}{2} \left( x + e^{- x} \right) \right] $$ \end{center} ::: :::: :::: {.columns .c} ::: {.column width=50%} ![](images/landau-pdf.pdf) ::: ::: {.column width=50%} ![](images/moyal-pdf.pdf) ::: :::: ## Two similar distributions \centering ![](images/both-pdf.pdf)