ex-1: implement half-sample mode

This commit is contained in:
Michele Guerini Rocco 2020-04-04 17:09:21 +00:00
parent 31821d8033
commit fd6fa78566
2 changed files with 167 additions and 2 deletions

View File

@ -1,10 +1,106 @@
#include <stdlib.h> #include <stdlib.h>
#include <math.h>
#include <gsl/gsl_rstat.h> #include <gsl/gsl_rstat.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_statistics_double.h> #include <gsl/gsl_statistics_double.h>
#include "bootstrap.h" #include "bootstrap.h"
/* Function that compares doubles for sorting:
* x > y 1
* x == y 0
* x < y -1
*/
int cmp_double (const void *xp, const void *yp) {
double x = *(double*)xp,
y = *(double*)yp;
return x > y ? 1 : (x == y ? 0 : -1);
}
/* Returns the (rounded) mean index of all
* components of `v` that are equal to `x`.
* This function is used to handle duplicate
* data (called "ties") in `hsm()`.
*/
size_t mean_index(gsl_vector *v, double x) {
gsl_rstat_workspace *w = gsl_rstat_alloc();
for (size_t i = 0; i < v->size; i++) {
if (gsl_vector_get(v, i) == x)
gsl_rstat_add((double)i, w);
}
int mean = gsl_rstat_mean(w);
gsl_rstat_free(w);
return round(mean);
}
/* Computes the half-sample mode (also called the Robertson-Cryer
* mode estimator) of the sample `x` containing `n` observations.
*
* It is based on repeatedly finding the modal interval (interval
* containing the most observations) of half of the sample.
* This implementation is based on the `hsm()` function from the
* modeest[1] R package.
*
* [1]: https://rdrr.io/cran/modeest/man/hsm.html
*/
double hsm(double *x, size_t n) {
int i, k;
gsl_vector *diffs_full = gsl_vector_calloc(n-n/2);
/* Divide the sample in two halves and compute
* the paired differences between the upper and
* lower halves. The index of the min diff. gives
* the start of the modal interval. Repeat on the
* new interval until three or less points are left.
*/
while (n > 3) {
k = n/2;
// lower/upper halves of x
gsl_vector upper = gsl_vector_view_array(x+k, n-k).vector;
gsl_vector lower = gsl_vector_view_array(x, n-k).vector;
// restrict diffs_full to length n-k
gsl_vector diffs = gsl_vector_subvector(diffs_full, 0, n-k).vector;
// compute the difference upper-lower
gsl_vector_memcpy(&diffs, &upper);
gsl_vector_sub(&diffs, &lower);
// find minimum while handling ties
i = mean_index(&diffs, gsl_vector_min(&diffs));
/* If the minumium difference is 0 we found
* the hsm so we set n=1 to break the loop.
*/
x += i;
n = (gsl_vector_get(&diffs, i) == 0) ? 1 : k;
}
// free memory
gsl_vector_free(diffs_full);
/* If the sample is has three points the hsm
* is the average of the two closer ones.
*/
if (n == 3) {
if (2*x[1] - x[0] - x[2] > 0)
return gsl_stats_mean(x+1, 1, 2);
return gsl_stats_mean(x, 1, 2);
}
/* Otherwise (smaller than 3) the hsm is just
* the mean of the points.
*/
return gsl_stats_mean(x, 1, n);
}
/* Computes an approximation to the asymptotic median /* Computes an approximation to the asymptotic median
* and its standard deviation by bootstrapping (ie * and its standard deviation by bootstrapping (ie
* repeated resampling) the original `sample`, `boots` * repeated resampling) the original `sample`, `boots`
@ -27,7 +123,7 @@ uncert bootstrap_median(
for (size_t i = 0; i < boots; i++) { for (size_t i = 0; i < boots; i++) {
/* The sampling is simply done by generating /* The sampling is simply done by generating
* an array index uniformely in [0, n-1]. * an array index uniformly in [0, n-1].
*/ */
for (size_t j = 0; j < n; j++) { for (size_t j = 0; j < n; j++) {
size_t choice = gsl_rng_uniform_int(r, n); size_t choice = gsl_rng_uniform_int(r, n);
@ -43,5 +139,51 @@ uncert bootstrap_median(
median.n = gsl_stats_mean(values, 1, boots); median.n = gsl_stats_mean(values, 1, boots);
median.s = gsl_stats_sd(values, 1, boots); median.s = gsl_stats_sd(values, 1, boots);
// free memory
free(values);
return median; return median;
} }
/* Computes an approximation to the asymptotic mode
* and its standard deviation by bootstrapping (ie
* repeated resampling) the original `sample`, `boots`
* times.
*
* The functions returns an `uncert` pair of mean and
* stddev of the modes computed on each sample.
*/
uncert bootstrap_mode(
const gsl_rng *r,
double *sample, size_t n,
int boots) {
double *values = calloc(boots, sizeof(double));
double *boot = calloc(n, sizeof(double));
for (size_t i = 0; i < boots; i++) {
/* The sampling is simply done by generating
* an array index uniformely in [0, n-1].
*/
for (size_t j = 0; j < n; j++) {
size_t choice = gsl_rng_uniform_int(r, n);
boot[j] = sample[choice];
}
qsort(boot, n, sizeof(double), cmp_double);
values[i] = hsm(boot, n);
}
/* Compute mean and stddev of the modes
* of each newly bootstrapped sample.
*/
uncert mode;
mode.n = gsl_stats_mean(values, 1, boots);
mode.s = gsl_stats_sd(values, 1, boots);
// free memory
free(values);
free(boot);
return mode;
}

View File

@ -1,5 +1,6 @@
#include <gsl/gsl_rng.h> #include <gsl/gsl_rng.h>
#pragma once
/* A pair structure that represent /* A pair structure that represent
* a value with an uncertainty * a value with an uncertainty
@ -10,15 +11,37 @@ typedef struct {
} uncert; } uncert;
/* Function that compare doubles for sorting:
* x > y 1
* x == y 0
* x < y -1
*/
int cmp_double (const void *xp, const void *yp);
/* Computes an approximation to the asymptotic median /* Computes an approximation to the asymptotic median
* and its standard deviation by bootstrapping (ie * and its standard deviation by bootstrapping (ie
* repeated resampling) the original `sample`, `boots` * repeated resampling) the original `sample`, `boots`
* times. * times.
* *
* The functions returns an `uncert` pair of mean and * The functions returns an `uncert` pair of mean and
* stdev of the medians computed on each sample. * sdtdev of the medians computed on each sample.
*/ */
uncert bootstrap_median( uncert bootstrap_median(
const gsl_rng *r, const gsl_rng *r,
double *sample, size_t n, double *sample, size_t n,
int boots); int boots);
/* Computes an approximation to the asymptotic mode
* and its standard deviation by bootstrapping (ie
* repeated resampling) the original `sample`, `boots`
* times.
*
* The functions returns an `uncert` pair of mean and
* stddev of the modes computed on each sample.
*/
uncert bootstrap_mode(
const gsl_rng *r,
double *sample, size_t n,
int boots);