slides: review section 1,2,3

This commit is contained in:
Michele Guerini Rocco 2020-06-06 02:53:49 +02:00
parent cb8fa79a91
commit f5e9088156
3 changed files with 78 additions and 77 deletions

View File

@ -72,6 +72,7 @@ How?
- Applying some hypothesis testings
## Why?
The Landau and Moyal PDFs are really similar. Historically, the latter distribution was utilized in
@ -79,32 +80,31 @@ the approximation of the Landau Distribution.
:::: {.columns}
::: {.column width=33%}
\centering
![](images/moyal-photo.jpg){height=130pt}
:::
::: {.column width=33%}
\centering
![](images/mondau-photo.jpg){height=130pt}
:::
::: {.column width=33%}
\centering
![](images/landau-photo.jpg){height=130pt}
:::
::::
## Two similar distributions
:::: {.columns .c}
:::: {.columns}
::: {.column width=50%}
\begin{center}
Landau PDF
$$
L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty}
dt \, e^{-t \ln(t) -xt} \sin (\pi t)
$$
:::
::: {.column width=50%}
\begin{center}
Moyal PDF
$$
M(x) = \frac{1}{\sqrt{2 \pi}} \exp \left[ - \frac{1}{2}
@ -113,10 +113,11 @@ the approximation of the Landau Distribution.
:::
::::
:::: {.columns .c}
:::: {.columns}
::: {.column width=50%}
![](images/landau-pdf.pdf)
:::
::: {.column width=50%}
![](images/moyal-pdf.pdf)
:::
@ -124,5 +125,4 @@ the approximation of the Landau Distribution.
## Two similar distributions
\centering
![](images/both-pdf.pdf)

View File

@ -3,43 +3,42 @@
## Moyal PDF
Standard form:
$$
M(x) = \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} \left[ x + e^{-x} \right]}
M(z) = \frac{1}{\sqrt{2 \pi}} \exp
\left[ - \frac{1}{2} \left( z + e^{-z} \right) \right]
$$
\vspace{10pt}
. . .
More generally:
- location parameter $\mu$
- scale parameter $\sigma$
$$
\text{More generally:} \hspace{15pt}
\begin{cases}
\text{location parameter:} \quad &\mu_M \\
\text{scale parameter:} \quad &\sigma_M
\end{cases}
$$
\vspace{10pt}
$$
x \rightarrow \frac{x - \mu}{\sigma_M} \thus
M_{\mu \sigma_M}(x) = \frac{1}{\sqrt{2 \pi} \sigma_M}
e^{-\frac{1}{2} \left[ \frac{x - \mu}{\sigma_M} + e^{- \frac{x - \mu}{\sigma_M}} \right]}
z = \frac{x - \mu}{\sigma}
\thus
M(x) = \frac{1}{\sqrt{2 \pi} \sigma} \exp
\left[ - \frac{1}{2} \left(
\frac{x - \mu}{\sigma}
+ e^{-\frac{x - \mu}{\sigma}} \right) \right]
$$
## Moyal CDF
The cumulative distribution function $F_M(x)$ can be derived from the
pdf $M(x)$ integrating:
The CDF $F_M(x)$ can be derived by direct integration:
$$
F_M(x) = \frac{1}{\sqrt{2 \pi}} \int\limits_{- \infty}^x dy \, M(y)
F_M(x) = \int\limits_{- \infty}^x dy \, M(y)
= \frac{1}{\sqrt{2 \pi}} \int\limits_{- \infty}^x dy \, e^{- \frac{y}{2}}
e^{- \frac{1}{2} e^{-y}}
$$
. . .
## Moyal CDF
with the change of variable:
$$
z = \frac{1}{\sqrt{2}} e^{-\frac{y}{2}}
$$
the CDF can be rewritten as:
With the change of variable $z = e^{-\frac{y}{2}}/\sqrt{2}$:
$$
F_M(x) =
\frac{-2 \sqrt{2}}{\sqrt{2 \pi}} \int\limits_{+ \infty}^{f(x)} dz \, e^{- z^2}
@ -49,9 +48,9 @@ $$
## Moyal CDF
given the definition of the error function `erf`:
Remembering the error function
$$
\text{erf} = \frac{2}{\sqrt{\pi}} \int_0^x dy \, e^{-y^2}
\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x dy \, e^{-y^2},
$$
one finally gets:
$$
@ -61,37 +60,32 @@ $$
## Moyal QDF
The quantile is defined as the inverse of the CDF:
The quantile (CDF\textsuperscript{-1}) is found solving:
$$
F_M(x) = 1 - \text{erf} \left( \frac{e^{- \frac{x}{2}}}{\sqrt{2}} \right)
y = 1 - \text{erf} \left( \frac{e^{- \frac{x}{2}}}{\sqrt{2}} \right)
$$
hence:
$$
Q(x) = -2 \ln \left[ \sqrt{2} \, \text{erf}^{(-1)} (1 - F_M(x)) \right]
Q_M(x) = -2 \ln \left[ \sqrt{2} \, \text{erf}^{-1} (1 - F_M(x)) \right]
$$
## Moyal median
The median is defined as the point at which $F_M(x) = 1/2$:
\vspace{15pt}
$$
M(x) \thus
m_M = -2 \ln \left[ \sqrt{2} \,
\text{erf}^{(-1)} \left( \frac{1}{2} \right) \right]
$$
\vspace{15pt}
$$
M_{\mu \sigma_M}(x) \thus
m_M = \mu -2 \sigma_M \ln \left[ \sqrt{2} \,
\text{erf}^{(-1)} \left( \frac{1}{2} \right) \right]
$$
Defined by $\text{CDF}(m) = 1/2$, or $m=\text{QDF}(1/2)$.
\begin{align*}
M(z)
&\thus m_M = -2 \ln \left[ \sqrt{2} \,
\text{erf}^{-1} \left( \frac{1}{2} \right) \right] \\
M_{\mu \sigma}(x)
&\thus m_M = \mu -2 \sigma \ln \left[ \sqrt{2} \,
\text{erf}^{-1} \left( \frac{1}{2} \right) \right]
\end{align*}
## Moyal mode
Peak of the PDF
\vspace{10pt}
Peak of the PDF:
$$
\partial_x M(x) = \partial_x \left( \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}
\left( x + e^{-x} \right)} \right)
@ -99,14 +93,11 @@ $$
\left( x + e^{-x} \right)} \left( -\frac{1}{2} \right)
\left( 1 - e^{-x} \right)
$$
\vspace{10pt}
$$
\partial_x M(x) = 0 \thus \mu_M = 0
$$
\vspace{10pt}
$$
\partial_x M_{\mu \sigma_M}(x) = 0 \thus \mu_M = \mu
$$
\begin{align*}
\partial_x M(z) = 0 &\thus \mu_M = 0 \\
\partial_x M_{\mu \sigma}(x) = 0 &\thus \mu_M = \mu \\
\end{align*}
## Moyal FWHM
@ -115,27 +106,30 @@ We need to compute the maximum value:
$$
M(\mu) = \frac{1}{\sqrt{2 \pi e}} \thus M(x_{\pm}) = \frac{1}{\sqrt{8 \pi e}}
$$
. . .
which leads to:
$$
x_{\pm} + e^{-x_{\pm}} = 1 + 2 \ln(2) \thus
\begin{cases}
x_+ = a + W_0 \left( - \frac{1}{4 e} \right) \\
x_- = a + W_{-1} \left( - \frac{1}{4 e} \right)
x_+ = 1 + 2 \ln(2) + W_0 \left( - \frac{1}{4 e} \right) \\
x_- = 1 + 2 \ln(2) + W_{-1} \left( - \frac{1}{4 e} \right)
\end{cases}
$$
with $a = 1 + 2 \ln(2)$
## Moyal FWHM
$$
\text{FWHM}_L = x_+ - x_- = 3.590806098...
$$
\vspace{15pt}
$$
M(x) \thus \text{FWHM}_M = 3.590806098...
$$
\vspace{15pt}
$$
M_{\mu \sigma_M}(x) \thus \text{FWHM}_M = \sigma_M \cdot 3.590806098...
x_+ - x_- = W_0 \left( - \frac{1}{4 e} \right)
- W_{-1} \left( - \frac{1}{4 e} \right)
= 3.590806098...
= a
$$
\begin{align*}
M(z)
&\thus \text{FWHM}_M = a \\
M_{\mu \sigma}(x)
&\thus \text{FWHM}_M = \sigma \cdot a \\
\end{align*}

View File

@ -3,12 +3,19 @@
## Data sample
The $M(x)$ most similar to $L(x)$ is found by imposing:
\vspace{15pt}
- equal mode
$$
\mu_M = \mu_L \sim = 0.22278298...
\mu_M = M_L \approx 0.22278298...
$$
\vspace{15pt}
- equal width
$$
\text{FWHM}_M = \text{FWHM}_L = 4.0186457...
\thus \sigma_M = 1.1191486
\text{FWHM}_M = \text{FWHM}_L = \sigma \cdot a
$$
. . .
$$
\implies \sigma_M \approx 1.1191486
$$