slides: improve median and mode sections
This commit is contained in:
parent
31240a030a
commit
b639fdeea3
@ -10,6 +10,7 @@ institute:
|
|||||||
theme: metropolis
|
theme: metropolis
|
||||||
themeoptions:
|
themeoptions:
|
||||||
- titleformat=allcaps
|
- titleformat=allcaps
|
||||||
|
- block=fill
|
||||||
aspectratio: 169
|
aspectratio: 169
|
||||||
|
|
||||||
fontsize: 12pt
|
fontsize: 12pt
|
||||||
@ -70,6 +71,10 @@ header-includes: |
|
|||||||
\setbeamerfont{section title}{series=\mdseries}
|
\setbeamerfont{section title}{series=\mdseries}
|
||||||
\setbeamerfont{frametitle}{series=\mdseries}
|
\setbeamerfont{frametitle}{series=\mdseries}
|
||||||
|
|
||||||
|
% trick to put markdown inside LaTeX
|
||||||
|
\let\Begin\begin
|
||||||
|
\let\End\end
|
||||||
|
|
||||||
% workaround issue matze/mtheme#371
|
% workaround issue matze/mtheme#371
|
||||||
\def\sectionpage{
|
\def\sectionpage{
|
||||||
\centering
|
\centering
|
||||||
|
@ -19,25 +19,45 @@
|
|||||||
. . .
|
. . .
|
||||||
|
|
||||||
\begin{center}
|
\begin{center}
|
||||||
No closed form for \textcolor{cyclamen}{ANYTHING}
|
No closed form for \alert{ANYTHING}
|
||||||
\end{center}
|
\end{center}
|
||||||
|
|
||||||
|
|
||||||
## Landau median
|
## Landau median
|
||||||
|
|
||||||
The median of a PDF is defined as:
|
::::: {.columns}
|
||||||
|
|
||||||
$$
|
:::: {.column width=50%}
|
||||||
m = Q \left( \frac{1}{2} \right)
|
|
||||||
$$
|
|
||||||
|
|
||||||
. . .
|
::: incremental
|
||||||
|
- The median of $f$ is defined by
|
||||||
|
$$
|
||||||
|
F(m) = \int_{-\infty}^m fdx = \frac{1}{2}
|
||||||
|
$$
|
||||||
|
|
||||||
|
- Equivalently
|
||||||
|
$$
|
||||||
|
m = F^{-1}\left(\frac{1}{2}\right)
|
||||||
|
$$
|
||||||
|
|
||||||
|
- Numerical integration or QDF is needed
|
||||||
|
:::
|
||||||
|
|
||||||
|
::::
|
||||||
|
|
||||||
|
::: {.column width=50%}
|
||||||
|
![](images/median.pdf)
|
||||||
|
:::
|
||||||
|
|
||||||
|
:::::
|
||||||
|
|
||||||
|
|
||||||
|
## Landau median
|
||||||
|
|
||||||
- CDF computed by numerical integration
|
- CDF computed by numerical integration
|
||||||
- QDF computed by numerical root-finding (Brent)
|
- QDF computed by numerical root-finding
|
||||||
|
|
||||||
\setbeamercovered{}
|
\setbeamercovered{}
|
||||||
|
|
||||||
\begin{center}
|
\begin{center}
|
||||||
\begin{tikzpicture}[remember picture]
|
\begin{tikzpicture}[remember picture]
|
||||||
\node at (0,0) (here) {$m_L\ex = 1.3557804...$};
|
\node at (0,0) (here) {$m_L\ex = 1.3557804...$};
|
||||||
@ -77,7 +97,6 @@ We need to compute the maximum:
|
|||||||
$$
|
$$
|
||||||
L_{\text{max}} = L(\mu_L)
|
L_{\text{max}} = L(\mu_L)
|
||||||
$$
|
$$
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\text{FWHM} = w = x_+ - x_- \with L(x_{\pm}) = \frac{L_{\text{max}}}{2}
|
\text{FWHM} = w = x_+ - x_- \with L(x_{\pm}) = \frac{L_{\text{max}}}{2}
|
||||||
$$
|
$$
|
||||||
|
@ -18,29 +18,16 @@ How to estimate sample median, mode and FWHM?
|
|||||||
|
|
||||||
## Sample median
|
## Sample median
|
||||||
|
|
||||||
:::: {.columns align=bottom}
|
\Begin{block}{Algorithm}
|
||||||
::: {.column width=50%}
|
::: incremental
|
||||||
$$
|
1. Sort sample in ascending order
|
||||||
F(m) = \frac{1}{2}
|
2.
|
||||||
$$
|
Take middle element if odd
|
||||||
|
|
||||||
\vspace{20pt}
|
Take average of two middle elements if even
|
||||||
|
|
||||||
. . .
|
|
||||||
|
|
||||||
- Sort points in ascending order
|
|
||||||
|
|
||||||
. . .
|
|
||||||
|
|
||||||
- Middle element if odd
|
|
||||||
|
|
||||||
Average of the two central elements if even
|
|
||||||
:::
|
:::
|
||||||
|
|
||||||
::: {.column width=50%}
|
\End{block}
|
||||||
![](images/median.pdf)
|
|
||||||
:::
|
|
||||||
::::
|
|
||||||
|
|
||||||
\setbeamercovered{}
|
\setbeamercovered{}
|
||||||
\begin{center}
|
\begin{center}
|
||||||
@ -80,17 +67,19 @@ How to estimate sample median, mode and FWHM?
|
|||||||
|
|
||||||
## Sample mode
|
## Sample mode
|
||||||
|
|
||||||
Half Sample Mode[@robertson74]
|
**Half Sample Mode** [@robertson74]
|
||||||
|
|
||||||
|
\Begin{block}{Algorithm}
|
||||||
- Find the smallest interval containing half points
|
::: incremental
|
||||||
- Repeat
|
1. Find the smallest interval containing half points
|
||||||
- If the sample has less than three points, take average
|
2. Repeat on the new interval (called modal)
|
||||||
|
3. If the interval has less than three points, take average
|
||||||
|
:::
|
||||||
|
\End{block}
|
||||||
|
|
||||||
. . .
|
. . .
|
||||||
|
|
||||||
\setbeamercovered{}
|
\setbeamercovered{}
|
||||||
|
|
||||||
\begin{center}
|
\begin{center}
|
||||||
\begin{tikzpicture}[remember picture, >=Stealth]
|
\begin{tikzpicture}[remember picture, >=Stealth]
|
||||||
% line
|
% line
|
||||||
|
Loading…
Reference in New Issue
Block a user