slides: write a summary about the Moyal parameters

This commit is contained in:
Giù Marcer 2020-06-04 23:22:17 +02:00 committed by rnhmjoj
parent 8ae8a1c7f7
commit ae5dea8e07

View File

@ -33,3 +33,59 @@ Moyal. The distribution models the energy lost by a fast charged particle
the Moyal distribution has been utilized in the approximation of the Landau the Moyal distribution has been utilized in the approximation of the Landau
Distribution and has since found use in modeling a wide array of phenomena. Distribution and has since found use in modeling a wide array of phenomena.
# PDF
The Moyal distribution is defined as:
$$
M(x) = \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} \left[ x + e^{-x} \right]}
$$
More generally, it is defined with the location and scale parameters $\mu$ and
$\sigma$ such as:
$$
x \rightarrow \frac{x - \mu}{\sigma}
$$
# CDF
The cumulative distribution function $\mathscr{M}(x)$ can be derived from the
pdf $M(x)$ integrating:
$$
\mathscr{M}(x) = \frac{1}{\sqrt{2 \pi}} \int\limits_{- \infty}^x dy \, M(y)
= \frac{1}{\sqrt{2 \pi}} \int\limits_{- \infty}^x dy \, e^{- \frac{1}{2}}
e^{- \frac{1}{2} e^{-y}}
$$
with the change of variable:
\begin{align}
z = \frac{1}{\sqrt{2}} e^{-\frac{y}{2}}
&\thus \frac{dz}{dy} = \frac{-1}{2 \sqrt{2}} e^{-\frac{y}{2}} \\
&\thus dy = -2 \sqrt{2} e^{\frac{y}{2}} dz
\end{align}
hence, the limits of the integral become:
\begin{align}
y \rightarrow - \infty &\thus z \rightarrow + \infty \\
y = x &\thus z = \frac{1}{\sqrt{2}} e^{-\frac{x}{2}} = f(x)
\end{align}
and the CDF can be rewritten as:
$$
\mathscr{M}(x) = \frac{1}{2 \pi} \int\limits_{+ \infty}^{f(x)}
dz \, (- 2 \sqrt{2}) e^{\frac{y}{2}} e^{- \frac{y}{2}} e^{- z^2}
= \frac{-2 \sqrt{2}}{\sqrt{2 \pi}} \int\limits_{+ \infty}^{f(x)}
dz e^{- z^2}
$$
since the `erf` is defines as:
$$
\text{erf} = \frac{2}{\sqrt{\pi}} \int_0^x dy \, e^{-y^2}
$$
$$
1 = \frac{2}{\sqrt{\pi}} \int_0^{+ \infty} dy \, e^{-y^2}
= \frac{2}{\sqrt{\pi}} \int_0^x dy \, e^{-y^2} +
\frac{2}{\sqrt{\pi}} \int_x^{+ \infty} dy \, e^{-y^2}
= \text{erf}(x) + \frac{2}{\sqrt{\pi}} \int_x^{+ \infty} dy \, e^{-y^2}
$$
thus:
$$
\frac{2}{\sqrt{\pi}} \int_x^{+ \infty} dy \, e^{-y^2}
1 = \frac{2}{\sqrt{\pi}} \int_0^x dy \, e^{-y^2} +
$$