slides: write a summary about the Moyal parameters
This commit is contained in:
parent
8ae8a1c7f7
commit
ae5dea8e07
@ -33,3 +33,59 @@ Moyal. The distribution models the energy lost by a fast charged particle
|
|||||||
the Moyal distribution has been utilized in the approximation of the Landau
|
the Moyal distribution has been utilized in the approximation of the Landau
|
||||||
Distribution and has since found use in modeling a wide array of phenomena.
|
Distribution and has since found use in modeling a wide array of phenomena.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# PDF
|
||||||
|
|
||||||
|
The Moyal distribution is defined as:
|
||||||
|
$$
|
||||||
|
M(x) = \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} \left[ x + e^{-x} \right]}
|
||||||
|
$$
|
||||||
|
More generally, it is defined with the location and scale parameters $\mu$ and
|
||||||
|
$\sigma$ such as:
|
||||||
|
$$
|
||||||
|
x \rightarrow \frac{x - \mu}{\sigma}
|
||||||
|
$$
|
||||||
|
|
||||||
|
# CDF
|
||||||
|
|
||||||
|
The cumulative distribution function $\mathscr{M}(x)$ can be derived from the
|
||||||
|
pdf $M(x)$ integrating:
|
||||||
|
$$
|
||||||
|
\mathscr{M}(x) = \frac{1}{\sqrt{2 \pi}} \int\limits_{- \infty}^x dy \, M(y)
|
||||||
|
= \frac{1}{\sqrt{2 \pi}} \int\limits_{- \infty}^x dy \, e^{- \frac{1}{2}}
|
||||||
|
e^{- \frac{1}{2} e^{-y}}
|
||||||
|
$$
|
||||||
|
with the change of variable:
|
||||||
|
\begin{align}
|
||||||
|
z = \frac{1}{\sqrt{2}} e^{-\frac{y}{2}}
|
||||||
|
&\thus \frac{dz}{dy} = \frac{-1}{2 \sqrt{2}} e^{-\frac{y}{2}} \\
|
||||||
|
&\thus dy = -2 \sqrt{2} e^{\frac{y}{2}} dz
|
||||||
|
\end{align}
|
||||||
|
hence, the limits of the integral become:
|
||||||
|
\begin{align}
|
||||||
|
y \rightarrow - \infty &\thus z \rightarrow + \infty \\
|
||||||
|
y = x &\thus z = \frac{1}{\sqrt{2}} e^{-\frac{x}{2}} = f(x)
|
||||||
|
\end{align}
|
||||||
|
and the CDF can be rewritten as:
|
||||||
|
$$
|
||||||
|
\mathscr{M}(x) = \frac{1}{2 \pi} \int\limits_{+ \infty}^{f(x)}
|
||||||
|
dz \, (- 2 \sqrt{2}) e^{\frac{y}{2}} e^{- \frac{y}{2}} e^{- z^2}
|
||||||
|
= \frac{-2 \sqrt{2}}{\sqrt{2 \pi}} \int\limits_{+ \infty}^{f(x)}
|
||||||
|
dz e^{- z^2}
|
||||||
|
$$
|
||||||
|
since the `erf` is defines as:
|
||||||
|
$$
|
||||||
|
\text{erf} = \frac{2}{\sqrt{\pi}} \int_0^x dy \, e^{-y^2}
|
||||||
|
$$
|
||||||
|
$$
|
||||||
|
1 = \frac{2}{\sqrt{\pi}} \int_0^{+ \infty} dy \, e^{-y^2}
|
||||||
|
= \frac{2}{\sqrt{\pi}} \int_0^x dy \, e^{-y^2} +
|
||||||
|
\frac{2}{\sqrt{\pi}} \int_x^{+ \infty} dy \, e^{-y^2}
|
||||||
|
= \text{erf}(x) + \frac{2}{\sqrt{\pi}} \int_x^{+ \infty} dy \, e^{-y^2}
|
||||||
|
$$
|
||||||
|
thus:
|
||||||
|
$$
|
||||||
|
\frac{2}{\sqrt{\pi}} \int_x^{+ \infty} dy \, e^{-y^2}
|
||||||
|
1 = \frac{2}{\sqrt{\pi}} \int_0^x dy \, e^{-y^2} +
|
||||||
|
$$
|
||||||
|
Loading…
Reference in New Issue
Block a user