sections: write a lot
This commit is contained in:
parent
7fd87ae8a3
commit
9c181ee241
@ -1,5 +1,5 @@
|
|||||||
---
|
---
|
||||||
title: Randomness tests of a non-uniform distribution
|
title: Title
|
||||||
date: \today
|
date: \today
|
||||||
author:
|
author:
|
||||||
- Giulia Marcer
|
- Giulia Marcer
|
||||||
@ -45,9 +45,24 @@ header-includes: |
|
|||||||
\hspace{30pt} \Longrightarrow \hspace{30pt}
|
\hspace{30pt} \Longrightarrow \hspace{30pt}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
% "and" in formulas
|
||||||
|
\DeclareMathOperator{\et}{%
|
||||||
|
\hspace{30pt} \wedge \hspace{30pt}
|
||||||
|
}
|
||||||
|
|
||||||
% "with" in formulas
|
% "with" in formulas
|
||||||
\DeclareMathOperator{\with}{%
|
\DeclareMathOperator{\with}{%
|
||||||
\hspace{30pt} \text{with} \hspace{30pt}
|
\hspace{30pt} \text{with} \hspace{30pt}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
% "expected" in formulas
|
||||||
|
\DeclareMathOperator{\ex}{%
|
||||||
|
^{\text{exp}}
|
||||||
|
}
|
||||||
|
|
||||||
|
% "observed" in formulas
|
||||||
|
\DeclareMathOperator{\ob}{%
|
||||||
|
^{\text{obs}}
|
||||||
|
}
|
||||||
```
|
```
|
||||||
...
|
...
|
||||||
|
@ -3,20 +3,24 @@
|
|||||||
|
|
||||||
## Goal
|
## Goal
|
||||||
|
|
||||||
What?
|
- Generate a sample $L$ of points from a Landau PDF
|
||||||
|
- Generate a sample $M$ of points from a Moyal PDF
|
||||||
|
|
||||||
- Generate a sample of points from a Moyal PDF
|
. . .
|
||||||
- Prove it truly comes from it and not from a Landau PDF
|
|
||||||
|
|
||||||
How?
|
- Implement a bunch of statistical tests
|
||||||
|
|
||||||
- Applying some hypothesis testings
|
. . .
|
||||||
|
|
||||||
|
- Check if they work:
|
||||||
|
- the sample $L$ truly comes from a Landau PDF
|
||||||
|
- the sample $M$ does not come from a Landau PDF
|
||||||
|
|
||||||
|
|
||||||
## Why?
|
## Why?
|
||||||
|
|
||||||
The Landau and Moyal PDFs are really similar. Historically, the latter distribution was utilized in
|
The Landau and Moyal PDFs are really similar. Historically, the latter was
|
||||||
the approximation of the Landau Distribution.
|
utilized in the approximation of the former.
|
||||||
|
|
||||||
:::: {.columns}
|
:::: {.columns}
|
||||||
::: {.column width=33%}
|
::: {.column width=33%}
|
||||||
@ -53,6 +57,8 @@ the approximation of the Landau Distribution.
|
|||||||
:::
|
:::
|
||||||
::::
|
::::
|
||||||
|
|
||||||
|
\vspace{10pt}
|
||||||
|
|
||||||
:::: {.columns}
|
:::: {.columns}
|
||||||
::: {.column width=50%}
|
::: {.column width=50%}
|
||||||
![](images/landau-pdf.pdf)
|
![](images/landau-pdf.pdf)
|
||||||
@ -63,6 +69,25 @@ the approximation of the Landau Distribution.
|
|||||||
:::
|
:::
|
||||||
::::
|
::::
|
||||||
|
|
||||||
|
|
||||||
## Two similar distributions
|
## Two similar distributions
|
||||||
|
|
||||||
![](images/both-pdf.pdf)
|
![](images/both-pdf.pdf)
|
||||||
|
|
||||||
|
|
||||||
|
## Statistical tests
|
||||||
|
|
||||||
|
. . .
|
||||||
|
|
||||||
|
- Parameters comparison:
|
||||||
|
- compatibility between expected and observed PDF parameters
|
||||||
|
|
||||||
|
. . .
|
||||||
|
|
||||||
|
- Kolmogorov - Smirnov:
|
||||||
|
- compatibility between expected and observed CDF
|
||||||
|
|
||||||
|
. . .
|
||||||
|
|
||||||
|
- Trapani test:
|
||||||
|
- compatibiity between expected and observed mean
|
||||||
|
@ -12,7 +12,7 @@ Because of its fat tail:
|
|||||||
|
|
||||||
. . .
|
. . .
|
||||||
|
|
||||||
No closed form for parameters.
|
No closed form for parameters $\thus$ Numerical estimations
|
||||||
|
|
||||||
|
|
||||||
## Landau median
|
## Landau median
|
||||||
@ -20,38 +20,48 @@ No closed form for parameters.
|
|||||||
The median of a PDF is defined as:
|
The median of a PDF is defined as:
|
||||||
|
|
||||||
$$
|
$$
|
||||||
Q_L(m) = \frac{1}{2}
|
m = Q \left( \frac{1}{2} \right)
|
||||||
$$
|
$$
|
||||||
|
|
||||||
. . .
|
. . .
|
||||||
|
|
||||||
- CDF computed by numerical integration,
|
- CDF computed by numerical integration
|
||||||
- QDF computed by numerical root-finding (Brent)
|
- QDF computed by numerical root-finding (Brent)
|
||||||
|
|
||||||
$$
|
$$
|
||||||
m_L = 1.3557804...
|
m_L\ex = 1.3557804...
|
||||||
$$
|
$$
|
||||||
|
|
||||||
|
|
||||||
## Landau mode
|
## Landau mode
|
||||||
|
|
||||||
- Maxmimum $\quad \Longrightarrow \quad \partial_x M(\mu) = 0$,
|
- Maxmimum $\quad \Longrightarrow \quad \partial_x L(\mu) = 0$
|
||||||
|
|
||||||
|
. . .
|
||||||
|
|
||||||
- Computed by numerical minimization (Brent)
|
- Computed by numerical minimization (Brent)
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\mu_L = − 0.22278...
|
\mu_L\ex = − 0.22278...
|
||||||
$$
|
$$
|
||||||
|
|
||||||
|
|
||||||
## Landau FWHM
|
## Landau FWHM
|
||||||
|
|
||||||
$$
|
We need to compute the maximum:
|
||||||
\text{FWHM} = x_+ - x_- \with L(x_{\pm})
|
|
||||||
= \frac{L_{\text{max}}}{2} = \frac{L(\mu_L)}{2}
|
|
||||||
$$
|
|
||||||
|
|
||||||
- Computed numerically (Brent)
|
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\text{FWHM}_L = 4.018645...
|
L_{\text{max}} = L(\mu_L)
|
||||||
|
$$
|
||||||
|
|
||||||
|
$$
|
||||||
|
\text{FWHM} = w = x_+ - x_- \with L(x_{\pm}) = \frac{L_{\text{max}}}{2}
|
||||||
|
$$
|
||||||
|
|
||||||
|
. . .
|
||||||
|
|
||||||
|
- Computed by numerical root finding (Brent)
|
||||||
|
|
||||||
|
$$
|
||||||
|
w_L\ex = 4.018645...
|
||||||
$$
|
$$
|
||||||
|
@ -50,7 +50,7 @@ $$
|
|||||||
|
|
||||||
Remembering the error function
|
Remembering the error function
|
||||||
$$
|
$$
|
||||||
\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x dy \, e^{-y^2},
|
\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x dy \, e^{-y^2}
|
||||||
$$
|
$$
|
||||||
one finally gets:
|
one finally gets:
|
||||||
$$
|
$$
|
||||||
@ -72,14 +72,14 @@ $$
|
|||||||
|
|
||||||
## Moyal median
|
## Moyal median
|
||||||
|
|
||||||
Defined by $\text{CDF}(m) = 1/2$, or $m=\text{QDF}(1/2)$.
|
Defined by $F(m) = \frac{1}{2}$ or $m = Q \left( \frac{1}{2} \right)$:
|
||||||
|
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
M(z)
|
M(z)
|
||||||
&\thus m_M = -2 \ln \left[ \sqrt{2} \,
|
&\thus m_M\ex = -2 \ln \left[ \sqrt{2} \,
|
||||||
\text{erf}^{-1} \left( \frac{1}{2} \right) \right] \\
|
\text{erf}^{-1} \left( \frac{1}{2} \right) \right] \\
|
||||||
M_{\mu \sigma}(x)
|
M_{\mu \sigma}(x)
|
||||||
&\thus m_M = \mu -2 \sigma \ln \left[ \sqrt{2} \,
|
&\thus m_M\ex = \mu -2 \sigma \ln \left[ \sqrt{2} \,
|
||||||
\text{erf}^{-1} \left( \frac{1}{2} \right) \right]
|
\text{erf}^{-1} \left( \frac{1}{2} \right) \right]
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
|
||||||
@ -95,8 +95,8 @@ $$
|
|||||||
$$
|
$$
|
||||||
|
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\partial_x M(z) = 0 &\thus \mu_M = 0 \\
|
\partial_x M(z) = 0 &\thus \mu_M\ex = 0 \\
|
||||||
\partial_x M_{\mu \sigma}(x) = 0 &\thus \mu_M = \mu \\
|
\partial_x M_{\mu \sigma}(x) = 0 &\thus \mu_M\ex = \mu \\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
|
||||||
|
|
||||||
@ -129,7 +129,7 @@ $$
|
|||||||
|
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
M(z)
|
M(z)
|
||||||
&\thus \text{FWHM}_M = a \\
|
&\thus w_M^{\text{exp}} = a \\
|
||||||
M_{\mu \sigma}(x)
|
M_{\mu \sigma}(x)
|
||||||
&\thus \text{FWHM}_M = \sigma \cdot a \\
|
&\thus w_M^{\text{exp}} = \sigma \cdot a \\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
@ -1,35 +1,86 @@
|
|||||||
# Data sample
|
# Sample parameters estimation
|
||||||
|
|
||||||
|
|
||||||
## PDF parameters
|
## Sample parameters estimation
|
||||||
|
|
||||||
A $M(x)$ similar to $L(x)$ can be found by imposing:
|
Once the points are sampled, how to estimate their median, mode and FWHM?
|
||||||
|
|
||||||
|
. . .
|
||||||
|
|
||||||
|
- Binning data $\quad \longrightarrow \quad$ result depending on bin-width
|
||||||
|
|
||||||
|
. . .
|
||||||
|
|
||||||
|
- Alternative solutions
|
||||||
|
|
||||||
|
|
||||||
|
## Sample median
|
||||||
|
|
||||||
- equal mode
|
|
||||||
$$
|
$$
|
||||||
\mu_M = \mu_L \approx −0.22278298...
|
m = Q \left( \frac{1}{2} \right)
|
||||||
$$
|
|
||||||
|
|
||||||
- equal width
|
|
||||||
$$
|
|
||||||
\text{FWHM}_M = \text{FWHM}_L = \sigma \cdot a
|
|
||||||
$$
|
$$
|
||||||
|
|
||||||
. . .
|
. . .
|
||||||
|
|
||||||
|
- Sort points in ascending order
|
||||||
|
|
||||||
|
. . .
|
||||||
|
|
||||||
|
- Middle element if odd
|
||||||
|
- Average of the two central elements if even
|
||||||
|
|
||||||
|
|
||||||
|
## Sample mode
|
||||||
|
|
||||||
|
Most probable value
|
||||||
|
|
||||||
|
. . .
|
||||||
|
|
||||||
|
HSM
|
||||||
|
|
||||||
|
- Iteratively identify the smallest interval containing half points
|
||||||
|
- once the sample is reduced to less than three points, take average
|
||||||
|
|
||||||
|
|
||||||
|
## Sample FWHM
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\implies \sigma_M \approx 1.1191486
|
\text{FWHM} = x_+ - x_- \with L(x_{\pm}) = \frac{L_{\text{max}}}{2}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
|
. . .
|
||||||
|
|
||||||
## PDF parameters
|
KDE
|
||||||
|
|
||||||
:::: {.columns}
|
- empirical PDF construction:
|
||||||
::: {.column width=50%}
|
|
||||||
![](images/both-pdf-bef.pdf)
|
|
||||||
:::
|
|
||||||
|
|
||||||
::: {.column width=50%}
|
$$
|
||||||
![](images/both-pdf-aft.pdf)
|
f_\varepsilon(x) = \frac{1}{N\varepsilon} \sum_{i = 1}^N
|
||||||
:::
|
G \left( \frac{x-x_i}{\varepsilon} \right)
|
||||||
::::
|
$$
|
||||||
|
|
||||||
|
The parameter $\varepsilon$ controls the strenght of the smoothing
|
||||||
|
|
||||||
|
|
||||||
|
## Sample FWHM
|
||||||
|
|
||||||
|
Silverman's rule of thumb:
|
||||||
|
|
||||||
|
$$
|
||||||
|
f_\varepsilon(x) = \frac{1}{N\varepsilon} \sum_{i = 1}^N
|
||||||
|
G \left( \frac{x-x_i}{\varepsilon} \right)
|
||||||
|
\with
|
||||||
|
\varepsilon = 0.63 \, S_N
|
||||||
|
\left( \frac{d + 2}{4}N \right)^{-1/(d + 4)}
|
||||||
|
$$
|
||||||
|
|
||||||
|
with:
|
||||||
|
|
||||||
|
- $S_N$ is the sample stdev
|
||||||
|
- $d$ number of dimensions ($d = 1$)
|
||||||
|
|
||||||
|
. . .
|
||||||
|
|
||||||
|
\vspace{10pt}
|
||||||
|
|
||||||
|
Numerical root finding (Brent)
|
||||||
|
66
slides/sections/5.md
Normal file
66
slides/sections/5.md
Normal file
@ -0,0 +1,66 @@
|
|||||||
|
# MC simulations
|
||||||
|
|
||||||
|
|
||||||
|
## In summary
|
||||||
|
|
||||||
|
-----------------------------------------------------
|
||||||
|
Landau Moyal
|
||||||
|
----------------- ----------------- -----------------
|
||||||
|
median $m_L\ex$ $m_M\ex (μ, σ)$
|
||||||
|
|
||||||
|
mode $\mu_L\ex$ $\mu_M\ex (μ)$
|
||||||
|
|
||||||
|
FWHM $w_L\ex$ $w_M\ex (σ)$
|
||||||
|
-----------------------------------------------------
|
||||||
|
|
||||||
|
|
||||||
|
## PDF parameters
|
||||||
|
|
||||||
|
A $M(x)$ similar to $L(x)$ can be found by imposing:
|
||||||
|
|
||||||
|
\vspace{15pt}
|
||||||
|
|
||||||
|
- equal mode
|
||||||
|
$$
|
||||||
|
\mu_M\ex = \mu_L\ex \approx −0.22278298...
|
||||||
|
$$
|
||||||
|
|
||||||
|
. . .
|
||||||
|
|
||||||
|
- equal width
|
||||||
|
$$
|
||||||
|
w_M\ex = w_L\ex = \sigma \cdot a
|
||||||
|
$$
|
||||||
|
|
||||||
|
$$
|
||||||
|
\implies \sigma_M \approx 1.1191486
|
||||||
|
$$
|
||||||
|
|
||||||
|
|
||||||
|
## PDF parameters
|
||||||
|
|
||||||
|
:::: {.columns}
|
||||||
|
::: {.column width=50%}
|
||||||
|
![](images/both-pdf-bef.pdf)
|
||||||
|
:::
|
||||||
|
|
||||||
|
::: {.column width=50%}
|
||||||
|
![](images/both-pdf-aft.pdf)
|
||||||
|
:::
|
||||||
|
::::
|
||||||
|
|
||||||
|
|
||||||
|
## Different medians
|
||||||
|
|
||||||
|
This leads to more different medians:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
m_M = 0.787... \thus &m_M = 0.658... \\
|
||||||
|
&m_L = 1.355...
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
|
||||||
|
## Samples
|
||||||
|
|
||||||
|
- Sample $L$: N = 50'000 points following $L_(x)$
|
||||||
|
- Sample $M$: N = 50'000 points following $M_{\mu \sigma}(x)$
|
0
slides/sections/6.md
Normal file
0
slides/sections/6.md
Normal file
Loading…
Reference in New Issue
Block a user