slides: create the misc folder

This commit is contained in:
Giù Marcer 2020-06-04 23:20:10 +02:00 committed by rnhmjoj
parent d09ae6de87
commit 8ae8a1c7f7
2 changed files with 63 additions and 0 deletions

View File

@ -0,0 +1,35 @@
The Moyal distribution, which is a steepest descent approximation of the
Landau distribition, is defines as:
$$
\exp \left( - \frac{x - \mu }{2 \sigma}
- \frac{1}{2} \exp \left( - \frac{x -\mu}{\sigma} \right) \right)
$$
Mean $m$ and variance $\sigma$:
$$
m = \mu + \sigma [ \gamma + \ln(2) ] \et \sigma = \frac{\pi^2 \sigma^2}{2}
$$
Median:
$$
\mu - \sigma \left[ 2 \text{erf}^{-1} \left( \frac{1}{2} \right)^2 \right]
$$
skewness and kurtosis are constant:
$$
s = \frac{28 \sqrt{2} Z(3)]{\pi^3} \et k = 7
$$
max value:
$$
\frac{1}{\sqrt{2 e \pi}}
$$
cdf:
$$
\text{erf} \left( \frac{\exp \left(
- \frac{x - \mu}{2 \sigma} \right)}{\sqrt{2}} \right)
$$
$\mu$ is the location parameter and $\sigma$ is the scale parameter.
The Moyal distribution was first proposed in a 1955 paper by physicist J. E.
Moyal. The distribution models the energy lost by a fast charged particle
(and hence the number of ion pairs produced) during ionization. Historically,
the Moyal distribution has been utilized in the approximation of the Landau
Distribution and has since found use in modeling a wide array of phenomena.

28
slides/misc/todo Normal file
View File

@ -0,0 +1,28 @@
produrre moyal più simile possibile alla Landau e poi distinguiamole.
renderle simili:
stessa moda
stessa fwhm
stessa mediana
poi applichiamo i quattro test che abbiamo implementato per distinguerle.
guardare anche quanti punti stanno oltre un certo numero di sigma.
Slide 1: Obiettivo (comfronto e identificazione pdf corretta)
Slide 2: Landau / Moyal (cosa sono)
Slide 3: Landau patologica
Slide 4: Landau mediana attesa
Slide 5: Landau moda attesa
Slide 6: Landau FWHM attesa
Slide 7: Moyal non patologica
Slide 8: Moyal mediana attesa
Slide 9: Moyal moda attesa
Slide 10: Moyal FWHM attesa
Slide 11: Campione generato
Slide 12: Spessore code
Slide 13: Misura punti estremi
Slide 14: Relativi risultati
Slide 15: KS (a cosa serve)
Slide 16: KS (come funziona 1)
Slide 17: KS (come funziona 2)
Slide 18: Relativi risultati
Slide 19: Conclusioni
Slide 20: