diff --git a/slides/sections/4.md b/slides/sections/4.md index 35c3120..a07164d 100644 --- a/slides/sections/4.md +++ b/slides/sections/4.md @@ -81,8 +81,8 @@ How to estimate sample median, mode and FWHM? . . . +\centering \setbeamercovered{} -\begin{center} \begin{tikzpicture}[remember picture, >=Stealth] % line \draw [line width=3, ->, cyclamen] (-5,0) -- (5,0); @@ -107,43 +107,34 @@ How to estimate sample median, mode and FWHM? \node at (2.45,-0.7) (f1) {}; \node at (2.45,0.7) (f2) {}; \end{tikzpicture} -\end{center} . . . -\begin{center} \begin{tikzpicture}[remember picture, overlay] % region - \draw [orange, fill=orange, opacity=0.5] (1a) rectangle (1b); + \draw [gray, fill=gray, opacity=0.5] (1a) rectangle (1b); \end{tikzpicture} -\end{center} . . . -\begin{center} \begin{tikzpicture}[remember picture, overlay] % region - \draw [orange, fill=orange, opacity=0.5] (2a) rectangle (1b); + \draw [gray, fill=gray, opacity=0.6] (2a) rectangle (1b); \end{tikzpicture} -\end{center} . . . -\begin{center} \begin{tikzpicture}[remember picture, overlay] % region - \draw [orange, fill=orange, opacity=0.5] (3a) rectangle (1b); + \draw [gray, fill=gray, opacity=0.7] (3a) rectangle (1b); \end{tikzpicture} -\end{center} . . . -\begin{center} \begin{tikzpicture}[remember picture, overlay] % region \draw [ultra thick] (f1) -- (f2); \end{tikzpicture} -\end{center} ## Sample FWHM @@ -166,7 +157,7 @@ $$ G \left( \frac{x-x_i}{\varepsilon} \right) $$ - The parameter $\varepsilon$ controls the strength of the smoothing + - The parameter $\varepsilon$ controls the strength of the smoothing ::: ::: {.column width=50%} @@ -210,22 +201,21 @@ $$ ## Sample FWHM -Silverman's rule of thumb [@silver86]: +**Silverman's rule of thumb** [@silver86]: $$ \varepsilon = 0.88 \, S_N \left( \frac{d + 2}{4}N \right)^{-1/(d + 4)} $$ - -with: +where: - $S_N$ is the sample standard deviation - $d$ is number of dimensions ($d = 1$) . . . -Numerical minimization (Brent) for $\quad f_{\varepsilon_{\text{max}}}$ -Numerical root finding (Brent) for $\quad f_{\varepsilon}(x_{\pm}) = +Minimization (Brent) for $\quad f_{\varepsilon_{\text{max}}}$ +Root finding (Brent-Dekker) for $\quad f_{\varepsilon}(x_{\pm}) = \frac{f_{\varepsilon_{\text{max}}}}{2}$