sections: reorder the sections in order to add the Landau paragraph

This commit is contained in:
Giù Marcer 2020-06-06 19:40:48 +02:00 committed by rnhmjoj
parent 160e218d6c
commit 697fbbce0c
5 changed files with 186 additions and 193 deletions

View File

@ -8,16 +8,38 @@ institute:
- Università di Milano-Bicocca
theme: metropolis
themeoptions:
- titleformat=allcaps
aspectratio: 169
fontsize: 14pt
fontsize: 12pt
mainfont: Fira Sans
mainfontoptions:
- BoldFont=Fira Sans
mathfont: FiraMath-Regular
sansfont: Fira Sans
header-includes: |
```{=latex}
%% Colors
\definecolor{mDarkTeal} {HTML}{020202}
\definecolor{mLightBrown}{HTML}{C49D4A}
\definecolor{mDarkRed} {HTML}{92182B}
\definecolor{green} {HTML}{60AC39}
\definecolor{red} {HTML}{D73737}
\definecolor{blue} {HTML}{6684E1}
\definecolor{yellow}{HTML}{CFB017}
\setbeamercolor{frametitle}{bg=mDarkRed}
% center images
\LetLtxMacro{\oldIncludegraphics}{\includegraphics}
\renewcommand{\includegraphics}[2][]{
\centering
\oldIncludegraphics[#1]{#2}
}
% Misc
% "thus" in formulas
\DeclareMathOperator{\thus}{%
\hspace{30pt} \Longrightarrow \hspace{30pt}
@ -27,6 +49,5 @@ header-includes: |
\DeclareMathOperator{\with}{%
\hspace{30pt} \text{with} \hspace{30pt}
}
```
...

View File

@ -1,63 +1,3 @@
---
title: Randomness tests of a non-uniform distribution
date: \today
author:
- Giulia Marcer
- Michele Guerini Rocco
institute:
- Università di Milano-Bicocca
theme: metropolis
themeoptions:
- titleformat=allcaps
aspectratio: 169
fontsize: 12pt
mainfont: Fira Sans
mainfontoptions:
- BoldFont=Fira Sans
mathfont: FiraMath-Regular
header-includes: |
```{=latex}
%% Colors
\definecolor{mDarkTeal} {HTML}{020202}
\definecolor{mLightBrown}{HTML}{C49D4A}
\definecolor{mDarkRed} {HTML}{92182B}
\definecolor{green} {HTML}{60AC39}
\definecolor{red} {HTML}{D73737}
\definecolor{blue} {HTML}{6684E1}
\definecolor{yellow}{HTML}{CFB017}
\setbeamercolor{frametitle}{bg=mDarkRed}
% center images
\LetLtxMacro{\oldIncludegraphics}{\includegraphics}
\renewcommand{\includegraphics}[2][]{
\centering
\oldIncludegraphics[#1]{#2}
}
%% customer macros
\DeclareMathOperator{\with}{%
\hspace{30pt} \text{with} \hspace{30pt}
}
% "thus" in formulas
\DeclareMathOperator{\thus}{%
\hspace{30pt} \Longrightarrow \hspace{30pt}
}
% "et" in formulas
\DeclareMathOperator{\et}{%
\hspace{30pt} \wedge \hspace{30pt}
}
```
...
# Goal

View File

@ -1,135 +1,32 @@
# Moyal distribution
# Landau PDF
## Moyal PDF
## Pathological probability distribution
Because of its fat tail:
Standard form:
$$
M(z) = \frac{1}{\sqrt{2 \pi}} \exp
\left[ - \frac{1}{2} \left( z + e^{-z} \right) \right]
$$
\begin{align*}
E[x] &\longrightarrow + \infty \\
V[x] &\longrightarrow + \infty
\end{align*}
. . .
No closed form for parameters.
More generally:
## Landau median
- location parameter $\mu$
- scale parameter $\sigma$
The median of a PDF is defined as:
$$
z = \frac{x - \mu}{\sigma}
\thus
M(x) = \frac{1}{\sqrt{2 \pi} \sigma} \exp
\left[ - \frac{1}{2} \left(
\frac{x - \mu}{\sigma}
+ e^{-\frac{x - \mu}{\sigma}} \right) \right]
Q_L(x) = \frac{1}{2}
$$
- CDF computed by numerical integration,
- QDF computed by numerical root-finding (Brent)
## Moyal CDF
The CDF $F_M(x)$ can be derived by direct integration:
$$
F_M(x) = \int\limits_{- \infty}^x dy \, M(y)
= \frac{1}{\sqrt{2 \pi}} \int\limits_{- \infty}^x dy \, e^{- \frac{y}{2}}
e^{- \frac{1}{2} e^{-y}}
$$
. . .
With the change of variable $z = e^{-\frac{y}{2}}/\sqrt{2}$:
$$
F_M(x) =
\frac{-2 \sqrt{2}}{\sqrt{2 \pi}} \int\limits_{+ \infty}^{f(x)} dz \, e^{- z^2}
\with f(x) = \frac{e^{- \frac{x}{2}}}{\sqrt{2}}
$$
## Moyal CDF
Remembering the error function
$$
\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x dy \, e^{-y^2},
$$
one finally gets:
$$
F_M(x) = 1 - \text{erf} \left( \frac{e^{- \frac{x}{2}}}{\sqrt{2}} \right)
$$
## Moyal QDF
The quantile (CDF\textsuperscript{-1}) is found solving:
$$
y = 1 - \text{erf} \left( \frac{e^{- \frac{x}{2}}}{\sqrt{2}} \right)
$$
hence:
$$
Q_M(x) = -2 \ln \left[ \sqrt{2} \, \text{erf}^{-1} (1 - F_M(x)) \right]
$$
## Moyal median
Defined by $\text{CDF}(m) = 1/2$, or $m=\text{QDF}(1/2)$.
\begin{align*}
M(z)
&\thus m_M = -2 \ln \left[ \sqrt{2} \,
\text{erf}^{-1} \left( \frac{1}{2} \right) \right] \\
M_{\mu \sigma}(x)
&\thus m_M = \mu -2 \sigma \ln \left[ \sqrt{2} \,
\text{erf}^{-1} \left( \frac{1}{2} \right) \right]
\end{align*}
## Moyal mode
Peak of the PDF:
$$
\partial_x M(x) = \partial_x \left( \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}
\left( x + e^{-x} \right)} \right)
= \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}
\left( x + e^{-x} \right)} \left( -\frac{1}{2} \right)
\left( 1 - e^{-x} \right)
$$
\begin{align*}
\partial_x M(z) = 0 &\thus \mu_M = 0 \\
\partial_x M_{\mu \sigma}(x) = 0 &\thus \mu_M = \mu \\
\end{align*}
## Moyal FWHM
We need to compute the maximum value:
$$
M(\mu) = \frac{1}{\sqrt{2 \pi e}} \thus M(x_{\pm}) = \frac{1}{\sqrt{8 \pi e}}
$$
. . .
which leads to:
$$
x_{\pm} + e^{-x_{\pm}} = 1 + 2 \ln(2) \thus
\begin{cases}
x_+ = 1 + 2 \ln(2) + W_0 \left( - \frac{1}{4 e} \right) \\
x_- = 1 + 2 \ln(2) + W_{-1} \left( - \frac{1}{4 e} \right)
\end{cases}
$$
## Moyal FWHM
$$
x_+ - x_- = W_0 \left( - \frac{1}{4 e} \right)
- W_{-1} \left( - \frac{1}{4 e} \right)
= 3.590806098...
= a
m_L = 1.3557804...
$$
\begin{align*}
M(z)
&\thus \text{FWHM}_M = a \\
M_{\mu \sigma}(x)
&\thus \text{FWHM}_M = \sigma \cdot a \\
\end{align*}
o

View File

@ -1,21 +1,135 @@
# Data sample
# Moyal distribution
## Data sample
The $M(x)$ most similar to $L(x)$ is found by imposing:
## Moyal PDF
- equal mode
Standard form:
$$
\mu_M = M_L \approx 0.22278298...
$$
- equal width
$$
\text{FWHM}_M = \text{FWHM}_L = \sigma \cdot a
M(z) = \frac{1}{\sqrt{2 \pi}} \exp
\left[ - \frac{1}{2} \left( z + e^{-z} \right) \right]
$$
. . .
More generally:
- location parameter $\mu$
- scale parameter $\sigma$
$$
\implies \sigma_M \approx 1.1191486
z = \frac{x - \mu}{\sigma}
\thus
M(x) = \frac{1}{\sqrt{2 \pi} \sigma} \exp
\left[ - \frac{1}{2} \left(
\frac{x - \mu}{\sigma}
+ e^{-\frac{x - \mu}{\sigma}} \right) \right]
$$
## Moyal CDF
The CDF $F_M(x)$ can be derived by direct integration:
$$
F_M(x) = \int\limits_{- \infty}^x dy \, M(y)
= \frac{1}{\sqrt{2 \pi}} \int\limits_{- \infty}^x dy \, e^{- \frac{y}{2}}
e^{- \frac{1}{2} e^{-y}}
$$
. . .
With the change of variable $z = e^{-\frac{y}{2}}/\sqrt{2}$:
$$
F_M(x) =
\frac{-2 \sqrt{2}}{\sqrt{2 \pi}} \int\limits_{+ \infty}^{f(x)} dz \, e^{- z^2}
\with f(x) = \frac{e^{- \frac{x}{2}}}{\sqrt{2}}
$$
## Moyal CDF
Remembering the error function
$$
\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x dy \, e^{-y^2},
$$
one finally gets:
$$
F_M(x) = 1 - \text{erf} \left( \frac{e^{- \frac{x}{2}}}{\sqrt{2}} \right)
$$
## Moyal QDF
The quantile (CDF\textsuperscript{-1}) is found solving:
$$
y = 1 - \text{erf} \left( \frac{e^{- \frac{x}{2}}}{\sqrt{2}} \right)
$$
hence:
$$
Q_M(x) = -2 \ln \left[ \sqrt{2} \, \text{erf}^{-1} (1 - F_M(x)) \right]
$$
## Moyal median
Defined by $\text{CDF}(m) = 1/2$, or $m=\text{QDF}(1/2)$.
\begin{align*}
M(z)
&\thus m_M = -2 \ln \left[ \sqrt{2} \,
\text{erf}^{-1} \left( \frac{1}{2} \right) \right] \\
M_{\mu \sigma}(x)
&\thus m_M = \mu -2 \sigma \ln \left[ \sqrt{2} \,
\text{erf}^{-1} \left( \frac{1}{2} \right) \right]
\end{align*}
## Moyal mode
Peak of the PDF:
$$
\partial_x M(x) = \partial_x \left( \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}
\left( x + e^{-x} \right)} \right)
= \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}
\left( x + e^{-x} \right)} \left( -\frac{1}{2} \right)
\left( 1 - e^{-x} \right)
$$
\begin{align*}
\partial_x M(z) = 0 &\thus \mu_M = 0 \\
\partial_x M_{\mu \sigma}(x) = 0 &\thus \mu_M = \mu \\
\end{align*}
## Moyal FWHM
We need to compute the maximum value:
$$
M(\mu) = \frac{1}{\sqrt{2 \pi e}} \thus M(x_{\pm}) = \frac{1}{\sqrt{8 \pi e}}
$$
. . .
which leads to:
$$
x_{\pm} + e^{-x_{\pm}} = 1 + 2 \ln(2) \thus
\begin{cases}
x_+ = 1 + 2 \ln(2) + W_0 \left( - \frac{1}{4 e} \right) \\
x_- = 1 + 2 \ln(2) + W_{-1} \left( - \frac{1}{4 e} \right)
\end{cases}
$$
## Moyal FWHM
$$
x_+ - x_- = W_0 \left( - \frac{1}{4 e} \right)
- W_{-1} \left( - \frac{1}{4 e} \right)
= 3.590806098...
= a
$$
\begin{align*}
M(z)
&\thus \text{FWHM}_M = a \\
M_{\mu \sigma}(x)
&\thus \text{FWHM}_M = \sigma \cdot a \\
\end{align*}

21
slides/sections/4.md Normal file
View File

@ -0,0 +1,21 @@
# Data sample
## Data sample
The $M(x)$ most similar to $L(x)$ is found by imposing:
- equal mode
$$
\mu_M = \mu_L \approx 0.22278298...
$$
- equal width
$$
\text{FWHM}_M = \text{FWHM}_L = \sigma \cdot a
$$
. . .
$$
\implies \sigma_M \approx 1.1191486
$$