ex-2/fast: implement proper exit condition for the algorithm

This commit is contained in:
Michele Guerini Rocco 2020-05-25 22:32:01 +02:00
parent dd7a3055ee
commit 5c7f46ce2f

View File

@ -17,7 +17,12 @@
*
* If N = 2^p (to simplify the log) to get the result to D
* decimal digits we must have 2^(p+1) > D / log(π), which is
* satisfied by p = floor(log(D)/log(2)).
* satisfied by p = floor(log2(N log(10) + log(π))) - 1.
*
* The number of series terms needed to reduce the error, due to
* to less than 10^-D is α2^p where α is the solution of:
*
* α log(α) = 3 + α α = exp(W(3e) - 1) 4.97
*
* source: http://www.numberworld.org/y-cruncher/internals/formulas.html
*
@ -104,7 +109,7 @@ void mpf_log2(mpf_t rop, size_t digits) {
/* Note: printf() rounds floating points to the number of digits
* in an implementation-dependent manner. To avoid printing
* (wrongly) rounded digits we increase the count by 1 and hide
* the last by overwiting with a space.
* the last by overwriting with a space.
*/
size_t d = digits>50? 50 : digits;
gmp_fprintf(stderr, "[mpf_log2] upper bound: %.*Ff\b \n", d+3, upp);
@ -120,20 +125,37 @@ void mpf_log2(mpf_t rop, size_t digits) {
}
void mpf_gamma(mpf_t rop, size_t digits, size_t prec) {
unsigned int p = log2(digits);
/* `mpf_gamma(rop, digits)` computes γ to `digits` decimal places
* using the above described algorithm and set results to `rop`.
*/
void mpf_gamma(mpf_t rop, size_t digits) {
/* The number N=2^p is fixed by requiring that the error
* is smaller than the precision/digits required:
*
* π exp(-4N) < 10^(-D)
*
* The first power of 2 solving the constraint is
*
* p = floor(log2(N log(10) + log(π))) - 1
*/
unsigned int p = log2(digits * log(10.0) + log(M_PI)) - 1;
fprintf(stderr, "[mpf_gamma] p: %d\n", p);
fprintf(stderr, "[mpf_gamma] log2(digits): %d\n", (int)log2(digits));
/* The number of iterations needed to reduce the error, due to
* ignoring the C/B² term, to less than 10^-D is α2^p where α
* is the solution of:
*
* α log(α) = 3 + α α = exp(W(3e) - 1) 4.97
*
*/
size_t kmax = 4.97 * (1 << p);
fprintf(stderr, "[mpf_gamma] iterations: %ld\n", kmax);
// initialise variables
mpf_t A, B, a, b, stop, temp;
mpf_inits(A, B, a, b, stop, temp, NULL);
/* Smallest representable number */
mpf_set_ui(stop, 10);
mpf_pow_ui(stop, stop, digits);
mpf_ui_div(stop, 1, stop);
gmp_fprintf(stderr, "[mpf_gamma] stop=%Fe\n", stop);
// A = a0 = -log(2^p) = -plog(2)
mpf_log2(a, digits);
mpf_mul_ui(a, a, p);
@ -144,8 +166,7 @@ void mpf_gamma(mpf_t rop, size_t digits, size_t prec) {
mpf_set_si(b, 1);
mpf_set_si(B, 1);
size_t k;
for(k = 1;; k++) {
for(size_t k = 1; k <= kmax; k++) {
// bk = bk-1 (n/k)^2
mpf_mul_2exp(b, b, 2*p);
mpf_div_ui(b, b, k);
@ -163,23 +184,13 @@ void mpf_gamma(mpf_t rop, size_t digits, size_t prec) {
// A += ak, B += bk
mpf_add(A, A, a);
mpf_add(B, B, b);
/* Exit when both ak and bk are smaller
* than the asked precision (10^-D).
*/
if (mpf_cmp(a, b) >= 0) {
if (mpf_cmp(a, stop) < 0) break;
} else {
if (mpf_cmp(b, stop) < 0) break;
}
}
fprintf(stderr, "[mpf_gamma] iterations: %ld\n", k);
// return A/B
mpf_div(rop, A, B);
// free memory
mpf_clears(A, B, a, b, temp, stop, NULL);
mpf_clears(A, B, a, b, temp, NULL);
}
int main(int argc, char** argv) {
@ -205,7 +216,7 @@ int main(int argc, char** argv) {
mpf_set_default_prec(prec + 64);
mpf_t y; mpf_init(y);
mpf_gamma(y, digits, prec);
mpf_gamma(y, digits);
// again, trick to avoid rounding
gmp_printf("%.*Ff\b \n", digits+1, y);