ex-2/fast: implement proper exit condition for the algorithm
This commit is contained in:
parent
dd7a3055ee
commit
5c7f46ce2f
59
ex-2/fast.c
59
ex-2/fast.c
@ -17,7 +17,12 @@
|
|||||||
*
|
*
|
||||||
* If N = 2^p (to simplify the log) to get the result to D
|
* If N = 2^p (to simplify the log) to get the result to D
|
||||||
* decimal digits we must have 2^(p+1) > D / log(π), which is
|
* decimal digits we must have 2^(p+1) > D / log(π), which is
|
||||||
* satisfied by p = floor(log(D)/log(2)).
|
* satisfied by p = floor(log2(N log(10) + log(π))) - 1.
|
||||||
|
*
|
||||||
|
* The number of series terms needed to reduce the error, due to
|
||||||
|
* to less than 10^-D is α⋅2^p where α is the solution of:
|
||||||
|
*
|
||||||
|
* α log(α) = 3 + α ⇒ α = exp(W(3e) - 1) ≈ 4.97
|
||||||
*
|
*
|
||||||
* source: http://www.numberworld.org/y-cruncher/internals/formulas.html
|
* source: http://www.numberworld.org/y-cruncher/internals/formulas.html
|
||||||
*
|
*
|
||||||
@ -104,7 +109,7 @@ void mpf_log2(mpf_t rop, size_t digits) {
|
|||||||
/* Note: printf() rounds floating points to the number of digits
|
/* Note: printf() rounds floating points to the number of digits
|
||||||
* in an implementation-dependent manner. To avoid printing
|
* in an implementation-dependent manner. To avoid printing
|
||||||
* (wrongly) rounded digits we increase the count by 1 and hide
|
* (wrongly) rounded digits we increase the count by 1 and hide
|
||||||
* the last by overwiting with a space.
|
* the last by overwriting with a space.
|
||||||
*/
|
*/
|
||||||
size_t d = digits>50? 50 : digits;
|
size_t d = digits>50? 50 : digits;
|
||||||
gmp_fprintf(stderr, "[mpf_log2] upper bound: %.*Ff\b \n", d+3, upp);
|
gmp_fprintf(stderr, "[mpf_log2] upper bound: %.*Ff\b \n", d+3, upp);
|
||||||
@ -120,20 +125,37 @@ void mpf_log2(mpf_t rop, size_t digits) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
void mpf_gamma(mpf_t rop, size_t digits, size_t prec) {
|
/* `mpf_gamma(rop, digits)` computes γ to `digits` decimal places
|
||||||
unsigned int p = log2(digits);
|
* using the above described algorithm and set results to `rop`.
|
||||||
|
*/
|
||||||
|
void mpf_gamma(mpf_t rop, size_t digits) {
|
||||||
|
/* The number N=2^p is fixed by requiring that the error
|
||||||
|
* is smaller than the precision/digits required:
|
||||||
|
*
|
||||||
|
* π exp(-4N) < 10^(-D)
|
||||||
|
*
|
||||||
|
* The first power of 2 solving the constraint is
|
||||||
|
*
|
||||||
|
* p = floor(log2(N log(10) + log(π))) - 1
|
||||||
|
*/
|
||||||
|
unsigned int p = log2(digits * log(10.0) + log(M_PI)) - 1;
|
||||||
fprintf(stderr, "[mpf_gamma] p: %d\n", p);
|
fprintf(stderr, "[mpf_gamma] p: %d\n", p);
|
||||||
|
fprintf(stderr, "[mpf_gamma] log2(digits): %d\n", (int)log2(digits));
|
||||||
|
|
||||||
|
/* The number of iterations needed to reduce the error, due to
|
||||||
|
* ignoring the C/B² term, to less than 10^-D is α⋅2^p where α
|
||||||
|
* is the solution of:
|
||||||
|
*
|
||||||
|
* α log(α) = 3 + α ⇒ α = exp(W(3e) - 1) ≈ 4.97
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
size_t kmax = 4.97 * (1 << p);
|
||||||
|
fprintf(stderr, "[mpf_gamma] iterations: %ld\n", kmax);
|
||||||
|
|
||||||
// initialise variables
|
// initialise variables
|
||||||
mpf_t A, B, a, b, stop, temp;
|
mpf_t A, B, a, b, stop, temp;
|
||||||
mpf_inits(A, B, a, b, stop, temp, NULL);
|
mpf_inits(A, B, a, b, stop, temp, NULL);
|
||||||
|
|
||||||
/* Smallest representable number */
|
|
||||||
mpf_set_ui(stop, 10);
|
|
||||||
mpf_pow_ui(stop, stop, digits);
|
|
||||||
mpf_ui_div(stop, 1, stop);
|
|
||||||
gmp_fprintf(stderr, "[mpf_gamma] stop=%Fe\n", stop);
|
|
||||||
|
|
||||||
// A = a0 = -log(2^p) = -plog(2)
|
// A = a0 = -log(2^p) = -plog(2)
|
||||||
mpf_log2(a, digits);
|
mpf_log2(a, digits);
|
||||||
mpf_mul_ui(a, a, p);
|
mpf_mul_ui(a, a, p);
|
||||||
@ -144,8 +166,7 @@ void mpf_gamma(mpf_t rop, size_t digits, size_t prec) {
|
|||||||
mpf_set_si(b, 1);
|
mpf_set_si(b, 1);
|
||||||
mpf_set_si(B, 1);
|
mpf_set_si(B, 1);
|
||||||
|
|
||||||
size_t k;
|
for(size_t k = 1; k <= kmax; k++) {
|
||||||
for(k = 1;; k++) {
|
|
||||||
// bk = bk-1 (n/k)^2
|
// bk = bk-1 (n/k)^2
|
||||||
mpf_mul_2exp(b, b, 2*p);
|
mpf_mul_2exp(b, b, 2*p);
|
||||||
mpf_div_ui(b, b, k);
|
mpf_div_ui(b, b, k);
|
||||||
@ -163,23 +184,13 @@ void mpf_gamma(mpf_t rop, size_t digits, size_t prec) {
|
|||||||
// A += ak, B += bk
|
// A += ak, B += bk
|
||||||
mpf_add(A, A, a);
|
mpf_add(A, A, a);
|
||||||
mpf_add(B, B, b);
|
mpf_add(B, B, b);
|
||||||
|
|
||||||
/* Exit when both ak and bk are smaller
|
|
||||||
* than the asked precision (10^-D).
|
|
||||||
*/
|
|
||||||
if (mpf_cmp(a, b) >= 0) {
|
|
||||||
if (mpf_cmp(a, stop) < 0) break;
|
|
||||||
} else {
|
|
||||||
if (mpf_cmp(b, stop) < 0) break;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
fprintf(stderr, "[mpf_gamma] iterations: %ld\n", k);
|
|
||||||
|
|
||||||
// return A/B
|
// return A/B
|
||||||
mpf_div(rop, A, B);
|
mpf_div(rop, A, B);
|
||||||
|
|
||||||
// free memory
|
// free memory
|
||||||
mpf_clears(A, B, a, b, temp, stop, NULL);
|
mpf_clears(A, B, a, b, temp, NULL);
|
||||||
}
|
}
|
||||||
|
|
||||||
int main(int argc, char** argv) {
|
int main(int argc, char** argv) {
|
||||||
@ -205,7 +216,7 @@ int main(int argc, char** argv) {
|
|||||||
mpf_set_default_prec(prec + 64);
|
mpf_set_default_prec(prec + 64);
|
||||||
|
|
||||||
mpf_t y; mpf_init(y);
|
mpf_t y; mpf_init(y);
|
||||||
mpf_gamma(y, digits, prec);
|
mpf_gamma(y, digits);
|
||||||
|
|
||||||
// again, trick to avoid rounding
|
// again, trick to avoid rounding
|
||||||
gmp_printf("%.*Ff\b \n", digits+1, y);
|
gmp_printf("%.*Ff\b \n", digits+1, y);
|
||||||
|
Loading…
Reference in New Issue
Block a user