ex-5: went on writing
This commit is contained in:
parent
cc7b9ba5a4
commit
4d6f18ae07
@ -1,8 +1,6 @@
|
|||||||
# Exercize 5
|
# Exercize 5
|
||||||
|
|
||||||
**Numerically compute an integral value via Monte Carlo approaches**
|
The following integral must be evaluated:
|
||||||
|
|
||||||
The integral to be evaluated is the following:
|
|
||||||
|
|
||||||
$$
|
$$
|
||||||
I = \int\limits_0^1 dx \, e^x
|
I = \int\limits_0^1 dx \, e^x
|
||||||
@ -143,7 +141,8 @@ For this reason, stratified sampling is used as a method of variance reduction
|
|||||||
when MC methods are used to estimate population statistics from a known
|
when MC methods are used to estimate population statistics from a known
|
||||||
population.
|
population.
|
||||||
|
|
||||||
**MISER**
|
|
||||||
|
### MISER
|
||||||
|
|
||||||
The MISER technique aims to reduce the integration error through the use of
|
The MISER technique aims to reduce the integration error through the use of
|
||||||
recursive stratified sampling.
|
recursive stratified sampling.
|
||||||
@ -224,7 +223,95 @@ This time the error, altough it lies always in the same order of magnitude of
|
|||||||
diff, seems to seesaw around the correct value.
|
diff, seems to seesaw around the correct value.
|
||||||
|
|
||||||
|
|
||||||
## VEGAS \textcolor{red}{WIP}
|
## Importance sampling
|
||||||
|
|
||||||
|
In statistics, importance sampling is a technique for estimating properties of
|
||||||
|
a given distribution, while only having samples generated from a different
|
||||||
|
distribution than the distribution of interest.
|
||||||
|
Consider a sample of $n$ points {$x_i$} generated according to a probability
|
||||||
|
distribition function $P$ which gives thereby the following expected value:
|
||||||
|
|
||||||
|
$$
|
||||||
|
E [x, P] = \frac{1}{n} \sum_i x_i
|
||||||
|
$$
|
||||||
|
|
||||||
|
with variance:
|
||||||
|
|
||||||
|
$$
|
||||||
|
\sigma^2 [E, P] = \frac{\sigma^2 [x, P]}{n}
|
||||||
|
$$
|
||||||
|
|
||||||
|
where $i$ runs over the sample and $\sigma^2 [x, P]$ is the variance of the
|
||||||
|
sorted points.
|
||||||
|
The idea is to sample them from a different distribution to lower the variance
|
||||||
|
of $E[x, P]$. This is accomplished by choosing a random variable $y \geq 0$ such
|
||||||
|
that $E[y ,P] = 1$. Then, a new probability $P^{(y)}$ is defined in order to
|
||||||
|
satisfy:
|
||||||
|
|
||||||
|
$$
|
||||||
|
E [x, P] = E \left[ \frac{x}{y}, P^{(y)} \right]
|
||||||
|
$$
|
||||||
|
|
||||||
|
This new estimate is better then former one if:
|
||||||
|
|
||||||
|
$$
|
||||||
|
\sigma^2 \left[ \frac{x}{y}, P^{(y)} \right] < \sigma^2 [x, P]
|
||||||
|
$$
|
||||||
|
|
||||||
|
The best variable $y$ would be:
|
||||||
|
|
||||||
|
$$
|
||||||
|
y^{\star} = \frac{x}{E [x, P]} \thus \frac{x}{y^{\star}} = E [x, P]
|
||||||
|
$$
|
||||||
|
|
||||||
|
and a single sample under $P^{(y^{\star})}$ suffices to give its value.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
The logic underlying importance sampling lies in a simple rearrangement of terms
|
||||||
|
in the integral to be computed:
|
||||||
|
|
||||||
|
$$
|
||||||
|
I = \int \limits_{\Omega} dx f(x) =
|
||||||
|
\int \limits_{\Omega} dx \, \frac{f(x)}{g(x)} \, g(x)=
|
||||||
|
\int \limits_{\Omega} dx \, w(x) \, g(x)
|
||||||
|
$$
|
||||||
|
|
||||||
|
where $w(x)$ is called 'importance function': a good importance function will be
|
||||||
|
large when the integrand is large and small otherwise.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
|
||||||
|
For example, in some of these points the function value is lower compared to
|
||||||
|
others and therefore contributes less to the whole integral.
|
||||||
|
|
||||||
|
### VEGAS \textcolor{red}{WIP}
|
||||||
|
|
||||||
The VEGAS algorithm is based on importance sampling. It samples points from the
|
The VEGAS algorithm is based on importance sampling. It samples points from the
|
||||||
probability distribution described by the function $f$, so that the points are
|
probability distribution described by the function $f$, so that the points are
|
||||||
|
Loading…
Reference in New Issue
Block a user