ex-1: use hsm to compute the mode

This commit is contained in:
Michele Guerini Rocco 2020-04-06 08:32:26 +00:00
parent df7a630094
commit 4c0b644513

View File

@ -10,18 +10,6 @@
#include "bootstrap.h" #include "bootstrap.h"
/* Function that compare doubles for sorting:
* x > y 1
* x == y 0
* x < y -1
*/
int cmp_double (const void *xp, const void *yp) {
double x = *(double*)xp,
y = *(double*)yp;
return x > y ? 1 : -1;
}
/* Here we generate random numbers in a uniform /* Here we generate random numbers in a uniform
* range and by using the quantile we map them * range and by using the quantile we map them
* to a Landau distribution. Then we generate an * to a Landau distribution. Then we generate an
@ -86,66 +74,27 @@ int main(int argc, char** argv) {
* *
* Find the bin with the maximum number of events * Find the bin with the maximum number of events
*/ */
double mode_o, maxbin = 0;
double f_mode_o = 0;
double m1, m2 = 0;
for(size_t i=0; i<bins; i++) {
m1 = hist->bin[i];
if (m1 > m2){
m2 = m1;
maxbin = (double)i;
f_mode_o = hist->bin[i];
}
}
fprintf(stderr, "\n\n# Mode comparison\n"); fprintf(stderr, "\n\n# Mode comparison\n");
fprintf(stderr, "step: %.2f\n ", (max - min)/bins);
f_mode_o = f_mode_o/samples;
mode_o = min + (maxbin + 0.5)*(max - min)/bins;
// print the results // print the results
double mode_e = numeric_mode(min, max); double mode_e = numeric_mode(min, max);
uncert mode_o = bootstrap_mode(r, sample, samples, 100);
fprintf(stderr, "\n## Results\n"); fprintf(stderr, "\n## Results\n");
fprintf(stderr, "expected mode: %.7f\n", mode_e); fprintf(stderr, "expected mode: %.7f\n", mode_e);
fprintf(stderr, "observed mode: %.3f\n", mode_o); fprintf(stderr, "observed mode: %.4f±%.4f\n", mode_o.n, mode_o.s);
double t = fabs(mode_e - mode_o.n)/mode_o.s;
double p = 1 - erf(t/sqrt(2));
fprintf(stderr, "\n## t-test\n");
fprintf(stderr, "t=%.3f\n", t);
fprintf(stderr, "p=%.3f\n", p);
/* FWHM comparison /* FWHM comparison
* *
* Find the bins x and x. * Find the bins x and x.
*/ */
double half = f_mode_o*samples/2;
m2 = samples;
double x_low = 0;
double x_upp = 0;
double diff;
for(size_t i=0; i<maxbin; i++) {
m1 = hist->bin[i];
diff = fabs(m1 - half);
if (diff < m2){
m2 = diff;
x_low = (double)i;
}
}
m2 = samples;
for(size_t i=maxbin; i<bins; i++) {
m1 = hist->bin[i];
diff = fabs(m1 - half);
if (diff < m2){
m2 = diff;
x_upp = (double)i;
}
}
x_low = min + (x_low + 0.5)*(max - min)/bins;
x_upp = min + (x_upp + 0.5)*(max - min)/bins;
double fwhm_o = x_upp - x_low;
// print the results
fprintf(stderr, "\n\n# FWHM comparison\n");
double fwhm_e = numeric_fwhm(min, max, mode_e);
fprintf(stderr, "\n## Results\n");
fprintf(stderr, "expected FWHM: %.7f\n", fwhm_e);
fprintf(stderr, "observed FWHM: %.3f\n", fwhm_o);
/* Median comparison /* Median comparison
@ -162,8 +111,8 @@ int main(int argc, char** argv) {
fprintf(stderr, "expected median: %.7f\n", med_e); fprintf(stderr, "expected median: %.7f\n", med_e);
fprintf(stderr, "observed median: %.4f±%.4f\n", med_o.n, med_o.s); fprintf(stderr, "observed median: %.4f±%.4f\n", med_o.n, med_o.s);
double t = (med_e - med_o.n)/med_o.s; t = fabs(med_e - med_o.n)/med_o.s;
double p = 1 - erf(t/sqrt(2)); p = 1 - erf(t/sqrt(2));
fprintf(stderr, "\n## t-test\n"); fprintf(stderr, "\n## t-test\n");
fprintf(stderr, "t=%.3f\n", t); fprintf(stderr, "t=%.3f\n", t);
fprintf(stderr, "p=%.3f\n", p); fprintf(stderr, "p=%.3f\n", p);