sections: fix things here and there
This commit is contained in:
parent
64e67e94f9
commit
4011082680
@ -24,19 +24,9 @@ $H_0$: sample following Landau PDF
|
|||||||
The Landau and Moyal PDFs are really similar. Historically, the latter was
|
The Landau and Moyal PDFs are really similar. Historically, the latter was
|
||||||
utilized as an approximation of the former.
|
utilized as an approximation of the former.
|
||||||
|
|
||||||
:::: {.columns}
|
\includegraphics<1>[height=5.5cm]{images/moyal-photo.jpg}
|
||||||
::: {.column width=33%}
|
\includegraphics<2>[height=5.5cm]{images/mondau-photo.jpg}
|
||||||
![](images/moyal-photo.jpg){height=130pt}
|
\includegraphics<3>[height=5.5cm]{images/landau-photo.jpg}
|
||||||
:::
|
|
||||||
|
|
||||||
::: {.column width=33%}
|
|
||||||
![](images/mondau-photo.jpg){height=130pt}
|
|
||||||
:::
|
|
||||||
|
|
||||||
::: {.column width=33%}
|
|
||||||
![](images/landau-photo.jpg){height=130pt}
|
|
||||||
:::
|
|
||||||
::::
|
|
||||||
|
|
||||||
|
|
||||||
## Two similar distributions
|
## Two similar distributions
|
||||||
|
@ -40,7 +40,7 @@
|
|||||||
m = F^{-1}\left(\frac{1}{2}\right)
|
m = F^{-1}\left(\frac{1}{2}\right)
|
||||||
$$
|
$$
|
||||||
|
|
||||||
- Numerical integration or QDF is needed
|
- PDF Numerical integration up to $1/2$ or QDF is needed
|
||||||
:::
|
:::
|
||||||
|
|
||||||
::::
|
::::
|
||||||
|
@ -38,21 +38,7 @@ $$
|
|||||||
|
|
||||||
. . .
|
. . .
|
||||||
|
|
||||||
With the change of variable $z = e^{-\frac{y}{2}}/\sqrt{2}$:
|
after a bit of math, one finally gets:
|
||||||
$$
|
|
||||||
F_M(x) =
|
|
||||||
\frac{-2 \sqrt{2}}{\sqrt{2 \pi}} \int\limits_{+ \infty}^{f(x)} dz \, e^{- z^2}
|
|
||||||
\with f(x) = \frac{e^{- \frac{x}{2}}}{\sqrt{2}}
|
|
||||||
$$
|
|
||||||
|
|
||||||
|
|
||||||
## Moyal CDF
|
|
||||||
|
|
||||||
Remembering the error function
|
|
||||||
$$
|
|
||||||
\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x dy \, e^{-y^2}
|
|
||||||
$$
|
|
||||||
one finally gets:
|
|
||||||
$$
|
$$
|
||||||
F_M(x) = 1 - \text{erf} \left( \frac{e^{- \frac{x}{2}}}{\sqrt{2}} \right)
|
F_M(x) = 1 - \text{erf} \left( \frac{e^{- \frac{x}{2}}}{\sqrt{2}} \right)
|
||||||
$$
|
$$
|
||||||
@ -125,7 +111,7 @@ $$
|
|||||||
|
|
||||||
We need to compute the maximum value:
|
We need to compute the maximum value:
|
||||||
$$
|
$$
|
||||||
M(\mu) = \frac{1}{\sqrt{2 \pi e}} \thus M(x_{\pm}) = \frac{1}{\sqrt{8 \pi e}}
|
M(\mu_M\ex) = \frac{1}{\sqrt{2 \pi e}} \thus M(x_{\pm}) = \frac{1}{\sqrt{8 \pi e}}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
. . .
|
. . .
|
||||||
|
@ -75,7 +75,7 @@ How to estimate sample median, mode and FWHM?
|
|||||||
::: incremental
|
::: incremental
|
||||||
1. Find the smallest interval containing half points
|
1. Find the smallest interval containing half points
|
||||||
2. Repeat on the new interval (called modal)
|
2. Repeat on the new interval (called modal)
|
||||||
3. If the interval has less than three points, take average
|
3. If the interval has less than two points, take average
|
||||||
:::
|
:::
|
||||||
\End{block}
|
\End{block}
|
||||||
|
|
||||||
|
@ -127,11 +127,11 @@ $$
|
|||||||
\draw [thick, cyclamen] (8.5,-0.2) -- (8.5,0.2);
|
\draw [thick, cyclamen] (8.5,-0.2) -- (8.5,0.2);
|
||||||
\node [below right, cyclamen] at (8.5,-0.2) {$a_{j+4}$};
|
\node [below right, cyclamen] at (8.5,-0.2) {$a_{j+4}$};
|
||||||
% notes
|
% notes
|
||||||
\node [below] at (1,-1) {0};
|
\node [below] at (1,-1) {1};
|
||||||
\node [below] at (2,-1) {0};
|
\node [below] at (2,-1) {1};
|
||||||
\node [below] at (5.2,-1) {1};
|
\node [below] at (5.2,-1) {0};
|
||||||
\node [below] at (6,-1) {1};
|
\node [below] at (6,-1) {0};
|
||||||
\node [below] at (8.5,-1) {1};
|
\node [below] at (8.5,-1) {0};
|
||||||
\draw [thick, ->] (1,-0.5) -- (1,-1);
|
\draw [thick, ->] (1,-0.5) -- (1,-1);
|
||||||
\draw [thick, ->] (2,-0.5) -- (2,-1);
|
\draw [thick, ->] (2,-0.5) -- (2,-1);
|
||||||
\draw [thick, ->] (5.2,-0.5) -- (5.2,-1);
|
\draw [thick, ->] (5.2,-0.5) -- (5.2,-1);
|
||||||
@ -162,7 +162,7 @@ $$
|
|||||||
If $a_j$ uniformly distributed, for the CLT:
|
If $a_j$ uniformly distributed, for the CLT:
|
||||||
$$
|
$$
|
||||||
\sum_j \zeta_j (u) \hence
|
\sum_j \zeta_j (u) \hence
|
||||||
G \left( \frac{r}{2}, \frac{r}{4} \right)
|
G \left( \frac{r}{2}, \frac{\sqrt{r}}{2} \right)
|
||||||
\thus \vartheta (u) \hence
|
\thus \vartheta (u) \hence
|
||||||
G \left( 0, 1 \right)
|
G \left( 0, 1 \right)
|
||||||
$$
|
$$
|
||||||
@ -195,7 +195,7 @@ $$
|
|||||||
|
|
||||||
## Trapani test
|
## Trapani test
|
||||||
|
|
||||||
If $\mu_k \ne + \infty \hence \left\{ a_j \right\}$ are not uniformly distributed
|
If $\mu_k < + \infty \hence \left\{ a_j \right\}$ are not uniformly distributed
|
||||||
|
|
||||||
\vspace{20pt}
|
\vspace{20pt}
|
||||||
|
|
||||||
|
@ -22,18 +22,14 @@ A $M(x)$ similar to $L(x)$ can be found by imposing:
|
|||||||
|
|
||||||
- equal mode
|
- equal mode
|
||||||
$$
|
$$
|
||||||
\mu_M\ex = \mu_L\ex \approx −0.22278298...
|
\mu_M\ex = \mu_L\ex \thus \mu \approx −0.22278298...
|
||||||
$$
|
$$
|
||||||
|
|
||||||
. . .
|
. . .
|
||||||
|
|
||||||
- equal width
|
- equal width
|
||||||
$$
|
$$
|
||||||
w_M\ex = w_L\ex = \sigma \cdot a
|
w_M\ex = w_L\ex = \sigma \cdot a \thus \sigma \approx 1.1191486...
|
||||||
$$
|
|
||||||
|
|
||||||
$$
|
|
||||||
\implies \sigma_M \approx 1.1191486...
|
|
||||||
$$
|
$$
|
||||||
|
|
||||||
|
|
||||||
|
@ -59,7 +59,7 @@ $$
|
|||||||
\setbeamercovered{transparent}
|
\setbeamercovered{transparent}
|
||||||
|
|
||||||
|
|
||||||
## Landau sample results
|
## L sample results
|
||||||
|
|
||||||
\begin{center}
|
\begin{center}
|
||||||
\begin{tabular}{rcccc}
|
\begin{tabular}{rcccc}
|
||||||
@ -79,7 +79,7 @@ $$
|
|||||||
\end{center}
|
\end{center}
|
||||||
|
|
||||||
|
|
||||||
## Moyal sample results
|
## M sample results
|
||||||
|
|
||||||
\begin{center}
|
\begin{center}
|
||||||
\begin{tabular}{rcccc}
|
\begin{tabular}{rcccc}
|
||||||
|
@ -2,16 +2,18 @@
|
|||||||
|
|
||||||
## Summary
|
## Summary
|
||||||
|
|
||||||
- All five tests properly work for a high number of points ($N = 50000$);
|
- All six tests properly work for a high number of points ($N = 50000$);
|
||||||
- Properties comparison:
|
- Properties comparison:
|
||||||
- The median estimation decreases in significe as $N$ decreases;
|
- Median estimation decreases in significance as $N$ decreases;
|
||||||
- The KDE for FWHM is the least stable test (not working for $N \leq 1000$);
|
- KDE for FWHM is the least stable test (not working for $N \leq 1000$);
|
||||||
- the mode estimation swtill properly works for very few points ($N = 200$);
|
- HSM swtill properly works for very few points ($N = 200$);
|
||||||
- KS still properly works for very few points ($N = 200$);
|
- KS still properly works for very few points ($N = 200$);
|
||||||
- The Trapani test decreases in significe as $N$ decreases.
|
- Trapani test (less informative) decreases in significance as $N$ decreases.
|
||||||
|
|
||||||
|
|
||||||
## Any questions? {.standout}
|
## Any questions? {.standout}
|
||||||
|
|
||||||
|
Any questions?
|
||||||
|
|
||||||
|
|
||||||
## Bibliograph
|
## Bibliograph
|
||||||
|
Loading…
Reference in New Issue
Block a user