notes: correct integrals spacing
This commit is contained in:
parent
0c6c2cc621
commit
3f6a54c456
@ -189,8 +189,9 @@ The cumulative probability was computed by quadrature-based numerical
|
|||||||
integration of the PDF (`gsl_integration_qagiu()` function in GSL). The function
|
integration of the PDF (`gsl_integration_qagiu()` function in GSL). The function
|
||||||
calculate an approximation of the integral:
|
calculate an approximation of the integral:
|
||||||
$$
|
$$
|
||||||
I(x) = \int_x^{+\infty} f(t)dt
|
I(x) = \int\limits_x^{+\infty} f(t)dt
|
||||||
$$
|
$$
|
||||||
|
|
||||||
[^1]: This is neither necessary nor the easiest way: it was chosen simply
|
[^1]: This is neither necessary nor the easiest way: it was chosen simply
|
||||||
because the quantile had been already implemented and was initially
|
because the quantile had been already implemented and was initially
|
||||||
used for reverse sampling.
|
used for reverse sampling.
|
||||||
|
@ -114,10 +114,10 @@ $$
|
|||||||
The integral $I$ can now be computed. Note that the domain is implicit in the
|
The integral $I$ can now be computed. Note that the domain is implicit in the
|
||||||
characteristic functions:
|
characteristic functions:
|
||||||
$$
|
$$
|
||||||
I(x) = \int_{-\infty}^{+\infty} dP_v \, f_{P_h , P_v} (x, P_v)
|
I(x) = \int\limits_{-\infty}^{+\infty} dP_v \, f_{P_h , P_v} (x, P_v)
|
||||||
= \int \limits_{- \sqrt{P_{\text{max}}^2 - P_h}}
|
= \hspace{-20pt} \int \limits_{- \sqrt{P_{\text{max}}^2 - P_h}}
|
||||||
^{\sqrt{P_{\text{max}}^2 - P_h}}
|
^{\sqrt{P_{\text{max}}^2 - P_h}}
|
||||||
dP_v \, f_{P_h , P_v} (x, P_v)
|
\hspace{-20pt} dP_v \, f_{P_h , P_v} (x, P_v)
|
||||||
$$
|
$$
|
||||||
|
|
||||||
With some basic calculus and the identity
|
With some basic calculus and the identity
|
||||||
|
@ -55,7 +55,7 @@ though, $\theta$ must be uniformly distributed on the half sphere, hence:
|
|||||||
\frac{d^2 P}{d\omega^2} = \frac{1}{2 \pi}
|
\frac{d^2 P}{d\omega^2} = \frac{1}{2 \pi}
|
||||||
&\thus d^2 P = \frac{1}{2 \pi} d\omega^2 =
|
&\thus d^2 P = \frac{1}{2 \pi} d\omega^2 =
|
||||||
\frac{1}{2 \pi} d\phi \sin{\theta} d\theta \\
|
\frac{1}{2 \pi} d\phi \sin{\theta} d\theta \\
|
||||||
&\thus \frac{dP}{d\theta} = \int_0^{2 \pi} d\phi \frac{1}{2 \pi} \sin{\theta}
|
&\thus \frac{dP}{d\theta} = \int_0^{2 \pi} \!\!\! d\phi \frac{1}{2 \pi} \sin{\theta}
|
||||||
= \frac{1}{2 \pi} \sin{\theta} \, 2 \pi = \sin{\theta}
|
= \frac{1}{2 \pi} \sin{\theta} \, 2 \pi = \sin{\theta}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user