ex-7: implement perceptron
This commit is contained in:
parent
f3293ba808
commit
313363c707
48
ex-7/main.c
48
ex-7/main.c
@ -1,12 +1,14 @@
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include "fisher.h"
|
||||
#include "percep.h"
|
||||
|
||||
/* Options for the program */
|
||||
struct options {
|
||||
char *mode;
|
||||
size_t nsig;
|
||||
size_t nnoise;
|
||||
int iter;
|
||||
};
|
||||
|
||||
|
||||
@ -16,18 +18,20 @@ int main(int argc, char **argv) {
|
||||
opts.mode = "fisher";
|
||||
opts.nsig = 800;
|
||||
opts.nnoise = 1000;
|
||||
opts.iter = 5;
|
||||
|
||||
/* Process CLI arguments */
|
||||
for (size_t i = 1; i < argc; i++) {
|
||||
if (!strcmp(argv[i], "-m")) opts.mode = argv[++i];
|
||||
else if (!strcmp(argv[i], "-s")) opts.nsig = atol(argv[++i]);
|
||||
else if (!strcmp(argv[i], "-n")) opts.nnoise = atol(argv[++i]);
|
||||
else if (!strcmp(argv[i], "-i")) opts.nnoise = atoi(argv[++i]);
|
||||
else {
|
||||
fprintf(stderr, "Usage: %s -[hiIntp]\n", argv[0]);
|
||||
fprintf(stderr, "\t-h\tShow this message.\n");
|
||||
fprintf(stderr, "\t-m MODE\tThe disciminant to use: 'fisher' for "
|
||||
"Fisher linear discriminant, 'percep' for perceptron.\n");
|
||||
fprintf(stderr, "\t-s N\tThe number of events in signal class.\n");
|
||||
fprintf(stderr, "\t-i N\tThe number of training iterations (for perceptron).\n");
|
||||
fprintf(stderr, "\t-n N\tThe number of events in noise class.\n");
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
@ -47,6 +51,9 @@ int main(int argc, char **argv) {
|
||||
sample_t *signal = generate_normal(r, opts.nsig, &par_sig);
|
||||
sample_t *noise = generate_normal(r, opts.nnoise, &par_noise);
|
||||
|
||||
gsl_vector *w;
|
||||
double t_cut;
|
||||
|
||||
if (!strcmp(opts.mode, "fisher")) {
|
||||
/* Fisher linear discriminant
|
||||
*
|
||||
@ -55,19 +62,36 @@ int main(int argc, char **argv) {
|
||||
* cut which determines the class for each
|
||||
* projected point.
|
||||
*/
|
||||
double ratio = opts.nsig / (double)opts.nnoise;
|
||||
gsl_vector *w = fisher_proj(signal, noise);
|
||||
double t_cut = fisher_cut(ratio, w, signal, noise);
|
||||
|
||||
fputs("# Linear Fisher discriminant\n\n", stderr);
|
||||
fprintf(stderr, "* w: [%.3f, %.3f]\n",
|
||||
gsl_vector_get(w, 0),
|
||||
gsl_vector_get(w, 1));
|
||||
fprintf(stderr, "* t_cut: %.3f\n", t_cut);
|
||||
|
||||
gsl_vector_fprintf(stdout, w, "%g");
|
||||
printf("%f\n", t_cut);
|
||||
double ratio = opts.nsig / (double)opts.nnoise;
|
||||
w = fisher_proj(signal, noise);
|
||||
t_cut = fisher_cut(ratio, w, signal, noise);
|
||||
}
|
||||
else if (!strcmp(opts.mode, "percep")) {
|
||||
/* Perceptron
|
||||
*
|
||||
* Train a single perceptron on the
|
||||
* dataset to get an approximate
|
||||
* solution in `iter` iterations.
|
||||
*/
|
||||
fputs("# Perceptron \n\n", stderr);
|
||||
w = percep_train(signal, noise, opts.iter, &t_cut);
|
||||
}
|
||||
else {
|
||||
fputs("\n\nerror: invalid mode. select either"
|
||||
" 'fisher' or 'percep'\n", stderr);
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
|
||||
/* Print the results of the method
|
||||
* selected: weights and threshold.
|
||||
*/
|
||||
fprintf(stderr, "* w: [%.3f, %.3f]\n",
|
||||
gsl_vector_get(w, 0),
|
||||
gsl_vector_get(w, 1));
|
||||
fprintf(stderr, "* t_cut: %.3f\n", t_cut);
|
||||
gsl_vector_fprintf(stdout, w, "%g");
|
||||
printf("%f\n", t_cut);
|
||||
|
||||
/* Print data to stdout for plotting.
|
||||
* Note: we print the sizes to be able
|
||||
|
86
ex-7/percep.c
Normal file
86
ex-7/percep.c
Normal file
@ -0,0 +1,86 @@
|
||||
#include "common.h"
|
||||
#include "percep.h"
|
||||
#include <math.h>
|
||||
#include <gsl/gsl_matrix.h>
|
||||
#include <gsl/gsl_blas.h>
|
||||
|
||||
/* `iterate(data, w, b, d, r)` performs one
|
||||
* iteration of the perceptron training.
|
||||
*
|
||||
* For each point xi compute:
|
||||
*
|
||||
* 1. yi = θ((w, xi) + b)
|
||||
*
|
||||
* 2. Δi = r⋅(d - yi)
|
||||
*
|
||||
* 3. w = w + Δi⋅xi, b = b + Δi
|
||||
*
|
||||
* The results are computed in-place.
|
||||
*/
|
||||
void iterate(
|
||||
gsl_matrix *data,
|
||||
gsl_vector *weight,
|
||||
double *bias,
|
||||
int expected,
|
||||
double rate) {
|
||||
|
||||
double proj, delta;
|
||||
gsl_vector *x = gsl_vector_alloc(2);
|
||||
|
||||
for (size_t i = 0; i < data->size1; i++) {
|
||||
/* Get a vector view of the
|
||||
* current row in the data matrix.
|
||||
*/
|
||||
gsl_vector row = gsl_matrix_const_row(data, i).vector;
|
||||
gsl_vector_memcpy(x, &row);
|
||||
|
||||
/* Project x onto the weight vector. */
|
||||
gsl_blas_ddot(weight, x, &proj);
|
||||
|
||||
/* Calculate Δ
|
||||
* Note: the step functions θ(x) is computed
|
||||
* by negating the sign bit of the floating
|
||||
* point.
|
||||
*/
|
||||
delta = rate * (expected - !signbit(proj + *bias));
|
||||
|
||||
/* Update weight and bias. */
|
||||
*bias += delta;
|
||||
gsl_vector_scale(x, delta);
|
||||
gsl_vector_add(weight, x);
|
||||
}
|
||||
|
||||
gsl_vector_free(x);
|
||||
}
|
||||
|
||||
/* `percep_train(sig, noise, iter, &cut)`
|
||||
* train a single perceptron to discriminate `sig`
|
||||
* from `noise`.
|
||||
*
|
||||
* The weigths are adjusted `iter` times and
|
||||
* returned, the bias/threshold is stored in the
|
||||
* `cut` argument.
|
||||
*/
|
||||
gsl_vector *percep_train(
|
||||
sample_t *signal, sample_t *noise,
|
||||
int iter, double *cut) {
|
||||
|
||||
/* Initially set weights/bias to zero
|
||||
* and a high learning rate.
|
||||
*/
|
||||
gsl_vector *w = gsl_vector_calloc(2);
|
||||
double bias = 0;
|
||||
double rate = 0.8;
|
||||
|
||||
/* Go trough the sample `iter` times
|
||||
* and recalculate the weights.
|
||||
*/
|
||||
for (int i = 0; i < iter; i++) {
|
||||
iterate( noise->data, w, &bias, 0, rate);
|
||||
iterate(signal->data, w, &bias, 1, rate);
|
||||
}
|
||||
|
||||
*cut = -bias;
|
||||
|
||||
return w;
|
||||
}
|
14
ex-7/percep.h
Normal file
14
ex-7/percep.h
Normal file
@ -0,0 +1,14 @@
|
||||
#include "common.h"
|
||||
#include <gsl/gsl_vector.h>
|
||||
|
||||
/* `percep_train(sig, noise, iter, &cut)`
|
||||
* train a single perceptron to discriminate `sig`
|
||||
* from `noise`.
|
||||
*
|
||||
* The weigths are adjusted `iter` times and
|
||||
* returned, the bias/threshold is stored in the
|
||||
* `cut` argument.
|
||||
*/
|
||||
gsl_vector *percep_train(
|
||||
sample_t *signal, sample_t *noise,
|
||||
int iter, double *cut);
|
Loading…
Reference in New Issue
Block a user