ex-7: implement perceptron

This commit is contained in:
Michele Guerini Rocco 2020-03-06 18:46:42 +00:00
parent f3293ba808
commit 313363c707
3 changed files with 136 additions and 12 deletions

View File

@ -1,12 +1,14 @@
#include <stdio.h>
#include <string.h>
#include "fisher.h"
#include "percep.h"
/* Options for the program */
struct options {
char *mode;
size_t nsig;
size_t nnoise;
int iter;
};
@ -16,18 +18,20 @@ int main(int argc, char **argv) {
opts.mode = "fisher";
opts.nsig = 800;
opts.nnoise = 1000;
opts.iter = 5;
/* Process CLI arguments */
for (size_t i = 1; i < argc; i++) {
if (!strcmp(argv[i], "-m")) opts.mode = argv[++i];
else if (!strcmp(argv[i], "-s")) opts.nsig = atol(argv[++i]);
else if (!strcmp(argv[i], "-n")) opts.nnoise = atol(argv[++i]);
else if (!strcmp(argv[i], "-i")) opts.nnoise = atoi(argv[++i]);
else {
fprintf(stderr, "Usage: %s -[hiIntp]\n", argv[0]);
fprintf(stderr, "\t-h\tShow this message.\n");
fprintf(stderr, "\t-m MODE\tThe disciminant to use: 'fisher' for "
"Fisher linear discriminant, 'percep' for perceptron.\n");
fprintf(stderr, "\t-s N\tThe number of events in signal class.\n");
fprintf(stderr, "\t-i N\tThe number of training iterations (for perceptron).\n");
fprintf(stderr, "\t-n N\tThe number of events in noise class.\n");
return EXIT_FAILURE;
}
@ -47,6 +51,9 @@ int main(int argc, char **argv) {
sample_t *signal = generate_normal(r, opts.nsig, &par_sig);
sample_t *noise = generate_normal(r, opts.nnoise, &par_noise);
gsl_vector *w;
double t_cut;
if (!strcmp(opts.mode, "fisher")) {
/* Fisher linear discriminant
*
@ -55,19 +62,36 @@ int main(int argc, char **argv) {
* cut which determines the class for each
* projected point.
*/
double ratio = opts.nsig / (double)opts.nnoise;
gsl_vector *w = fisher_proj(signal, noise);
double t_cut = fisher_cut(ratio, w, signal, noise);
fputs("# Linear Fisher discriminant\n\n", stderr);
fprintf(stderr, "* w: [%.3f, %.3f]\n",
gsl_vector_get(w, 0),
gsl_vector_get(w, 1));
fprintf(stderr, "* t_cut: %.3f\n", t_cut);
gsl_vector_fprintf(stdout, w, "%g");
printf("%f\n", t_cut);
double ratio = opts.nsig / (double)opts.nnoise;
w = fisher_proj(signal, noise);
t_cut = fisher_cut(ratio, w, signal, noise);
}
else if (!strcmp(opts.mode, "percep")) {
/* Perceptron
*
* Train a single perceptron on the
* dataset to get an approximate
* solution in `iter` iterations.
*/
fputs("# Perceptron \n\n", stderr);
w = percep_train(signal, noise, opts.iter, &t_cut);
}
else {
fputs("\n\nerror: invalid mode. select either"
" 'fisher' or 'percep'\n", stderr);
return EXIT_FAILURE;
}
/* Print the results of the method
* selected: weights and threshold.
*/
fprintf(stderr, "* w: [%.3f, %.3f]\n",
gsl_vector_get(w, 0),
gsl_vector_get(w, 1));
fprintf(stderr, "* t_cut: %.3f\n", t_cut);
gsl_vector_fprintf(stdout, w, "%g");
printf("%f\n", t_cut);
/* Print data to stdout for plotting.
* Note: we print the sizes to be able

86
ex-7/percep.c Normal file
View File

@ -0,0 +1,86 @@
#include "common.h"
#include "percep.h"
#include <math.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>
/* `iterate(data, w, b, d, r)` performs one
* iteration of the perceptron training.
*
* For each point xi compute:
*
* 1. yi = θ((w, xi) + b)
*
* 2. Δi = r(d - yi)
*
* 3. w = w + Δixi, b = b + Δi
*
* The results are computed in-place.
*/
void iterate(
gsl_matrix *data,
gsl_vector *weight,
double *bias,
int expected,
double rate) {
double proj, delta;
gsl_vector *x = gsl_vector_alloc(2);
for (size_t i = 0; i < data->size1; i++) {
/* Get a vector view of the
* current row in the data matrix.
*/
gsl_vector row = gsl_matrix_const_row(data, i).vector;
gsl_vector_memcpy(x, &row);
/* Project x onto the weight vector. */
gsl_blas_ddot(weight, x, &proj);
/* Calculate Δ
* Note: the step functions θ(x) is computed
* by negating the sign bit of the floating
* point.
*/
delta = rate * (expected - !signbit(proj + *bias));
/* Update weight and bias. */
*bias += delta;
gsl_vector_scale(x, delta);
gsl_vector_add(weight, x);
}
gsl_vector_free(x);
}
/* `percep_train(sig, noise, iter, &cut)`
* train a single perceptron to discriminate `sig`
* from `noise`.
*
* The weigths are adjusted `iter` times and
* returned, the bias/threshold is stored in the
* `cut` argument.
*/
gsl_vector *percep_train(
sample_t *signal, sample_t *noise,
int iter, double *cut) {
/* Initially set weights/bias to zero
* and a high learning rate.
*/
gsl_vector *w = gsl_vector_calloc(2);
double bias = 0;
double rate = 0.8;
/* Go trough the sample `iter` times
* and recalculate the weights.
*/
for (int i = 0; i < iter; i++) {
iterate( noise->data, w, &bias, 0, rate);
iterate(signal->data, w, &bias, 1, rate);
}
*cut = -bias;
return w;
}

14
ex-7/percep.h Normal file
View File

@ -0,0 +1,14 @@
#include "common.h"
#include <gsl/gsl_vector.h>
/* `percep_train(sig, noise, iter, &cut)`
* train a single perceptron to discriminate `sig`
* from `noise`.
*
* The weigths are adjusted `iter` times and
* returned, the bias/threshold is stored in the
* `cut` argument.
*/
gsl_vector *percep_train(
sample_t *signal, sample_t *noise,
int iter, double *cut);