ex-1: add KDE plot program
This commit is contained in:
parent
09205a5f1e
commit
15eb3dbb88
95
ex-1/kde-plot.py
Executable file
95
ex-1/kde-plot.py
Executable file
@ -0,0 +1,95 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from scipy.stats import moyal
|
||||
from scipy.optimize import minimize
|
||||
|
||||
|
||||
def gaussian_kde(dataset, points):
|
||||
n = dataset.size
|
||||
m = points.size
|
||||
|
||||
var = np.var(dataset) * np.power(n*3/4, -2/5) * 0.4
|
||||
result = np.zeros(m)
|
||||
|
||||
if m >= n:
|
||||
for i in range(n):
|
||||
diff = dataset[i] - points
|
||||
result += np.exp(-diff**2/(2*var))/n
|
||||
else:
|
||||
for i in range(m):
|
||||
diff = dataset - points[i]
|
||||
result[i] = np.sum(np.exp(-diff**2 / (2*var)))
|
||||
|
||||
return result / np.sqrt(2*np.pi*var) / n
|
||||
|
||||
|
||||
def gaussian_kde_point(dataset, var, x):
|
||||
var *= np.power(dataset.size * 3/4, -2/5) * 0.4
|
||||
val = np.sum(np.exp(-(x - dataset)**2 / (2*var))) / dataset.size
|
||||
return val / np.sqrt(2*np.pi*var)
|
||||
|
||||
|
||||
def hsm(x):
|
||||
n = len(x)
|
||||
while n > 3:
|
||||
k = n//2
|
||||
diffs = x[k:] - x[:-k]
|
||||
|
||||
i = np.where(diffs == np.min(diffs))[0]
|
||||
i = int(np.mean(i))
|
||||
|
||||
if diffs[i] == 0:
|
||||
return x[i]
|
||||
else:
|
||||
x = x[i:i+k]
|
||||
n = len(x)
|
||||
|
||||
if n == 3:
|
||||
d = 2*x[1] - x[0] - x[2]
|
||||
return np.mean(x[1:] if d > 0 else x[:2])
|
||||
|
||||
if n < 3:
|
||||
return np.mean(x)
|
||||
|
||||
|
||||
def bootstrap(f, x, n):
|
||||
vals = np.empty(n)
|
||||
for i in range(n):
|
||||
s = np.random.choice(x, size=x.size)
|
||||
vals[i] = f(np.sort(s))
|
||||
return vals
|
||||
|
||||
|
||||
np.random.seed(1)
|
||||
x = np.linspace(-2, 25, 400)
|
||||
sample = moyal.rvs(size=5000, loc=4)
|
||||
|
||||
s = np.argsort(sample)
|
||||
|
||||
f = gaussian_kde(sample, x)
|
||||
|
||||
|
||||
def kde(sample):
|
||||
var = np.var(sample)
|
||||
f = lambda x: -gaussian_kde_point(sample, var, x)
|
||||
M = minimize(lambda x: f(x), hsm(sample)).x
|
||||
return M
|
||||
|
||||
m = bootstrap(hsm, sample, 500)
|
||||
M = bootstrap(kde, sample, 500)
|
||||
|
||||
print(m.mean(), m.std())
|
||||
print(M.mean(), M.std())
|
||||
|
||||
plt.figure()
|
||||
plt.plot(x, moyal.pdf(x, loc=4), c='xkcd:gray', label='true PDF')
|
||||
plt.plot(x, f, '#92182b', label='empirical PDF')
|
||||
plt.plot(sample, np.zeros_like(sample),
|
||||
'|', c='xkcd:navy')
|
||||
#plt.axvline(x=m.mean(), c='r')
|
||||
plt.axvline(x=M.mean(), c='xkcd:camel', label='mode')
|
||||
plt.legend()
|
||||
plt.show()
|
Loading…
Reference in New Issue
Block a user