From 15b6519a7703b79e89d506b1c002ba8663b6f21d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Gi=C3=B9=20Marcer?= Date: Tue, 9 Jun 2020 14:53:16 +0000 Subject: [PATCH] slides: write about the Trapani test --- slides/sections/8.md | 204 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 204 insertions(+) create mode 100644 slides/sections/8.md diff --git a/slides/sections/8.md b/slides/sections/8.md new file mode 100644 index 0000000..8733fb0 --- /dev/null +++ b/slides/sections/8.md @@ -0,0 +1,204 @@ +# Trapani test + + +## Finite/infinite momenta + +For a Landau PDF: +\begin{align*} + E_L[x] &\longrightarrow + \infty \\ + V_L[x] &\longrightarrow + \infty +\end{align*} + +. . . + +For a Moyal PDF: +\begin{align*} + E_M[x] &= \mu + \sigma [ \gamma + \ln(2) ] \\ + V_M[x] &= \frac{\pi^2 \sigma^2}{2} +\end{align*} + + +## Finite/infinite momenta + +- Check whether a momentum is finite or infinite +\begin{align*} + \text{infinite} &\thus Landau \\ + \text{finite} &\thus Moyal +\end{align*} + +. . . + + +# Trapani test + + +## Trapani test + +::: incremental + + - Random variable $\left\{ x_i \right\}$ sampled from a distribution $f$ + - Sample moments according to $f$ moments + - $H_0$: $\mu_k \longrightarrow + \infty$ + - Statistic with chi-squared distribution + +::: + + +## Trapani test + +- Start with $\left\{ x_i \right\}^N$ and compute $\mu_k$ as: + $$ + \mu_k = \frac{1}{N} \sum_{i = 1}^N |x_i|^k + $$ + +. . . + +- Generate $r$ points $\left\{ \xi_j\right\}^r$ according to $G(0, 1)$ and define + $\left\{ a_j \right\}^r$ as: + $$ + a_j = \sqrt{e^{\mu_k}} \cdot \xi_j + \thus G'\left( 0, \sqrt{e^{\mu_k}} \right) + $$ + +. . . + +The greater $\mu^k$, the 'larger' $G'$ + +- if $\mu_k \longrightarrow + \infty \thus a_j$ distributed uniformly + + +## Trapani test + +- Define the sequence: $\left\{ \zeta_j (u) \right\}^r$ as: + $$ + \zeta_j (u) = \theta( u - a_j) \with \theta - \text{Heaviside} + $$ + +. . . + +\begin{center} +\begin{tikzpicture} + \definecolor{cyclamen}{RGB}{146,24,43} + % line + \draw [line width=3, ->, cyclamen] (0,0) -- (10,0); + \node [right] at (10,0) {$u$}; + % tic + \draw [thick] (5,-0.3) -- (5,0.3); + \node [above] at (5,0.3) {$u_0$}; + % aj tics + \draw [thick, cyclamen] (1,-0.2) -- (1,0.2); + \node [below right, cyclamen] at (1,-0.2) {$a_{j+2}$}; + \draw [thick, cyclamen] (2,-0.2) -- (2,0.2); + \node [below right, cyclamen] at (2,-0.2) {$a_j$}; + \draw [thick, cyclamen] (5.2,-0.2) -- (5.2,0.2); + \node [below right, cyclamen] at (5.2,-0.2) {$a_{j+2}$}; + \draw [thick, cyclamen] (6,-0.2) -- (6,0.2); + \node [below right, cyclamen] at (6,-0.2) {$a_{j+3}$}; + \draw [thick, cyclamen] (8.5,-0.2) -- (8.5,0.2); + \node [below right, cyclamen] at (8.5,-0.2) {$a_{j+4}$}; + % notes + \node [below] at (1,-1) {0}; + \node [below] at (2,-1) {0}; + \node [below] at (5.2,-1) {1}; + \node [below] at (6,-1) {1}; + \node [below] at (8.5,-1) {1}; + \draw [thick, ->] (1,-0.5) -- (1,-1); + \draw [thick, ->] (2,-0.5) -- (2,-1); + \draw [thick, ->] (5.2,-0.5) -- (5.2,-1); + \draw [thick, ->] (6,-0.5) -- (6,-1); + \draw [thick, ->] (8.5,-0.5) -- (8.5,-1); +\end{tikzpicture} +\end{center} + +. . . + +If $a_j$ uniformly distributed and $N \rightarrow + \infty$: + +- $\zeta_j (u)$ Bernoulli PDF with $P(\zeta_j (u) = 1) = \frac{1}{2}$ + + +## Trapani test + +- Define the function $\vartheta (u)$ as: +$$ + \vartheta (u) = \frac{2}{\sqrt{r}} + \left[ \sum_{j} \zeta_j (u) - \frac{r}{2} \right] +$$ + +. . . + +If $a_j$ uniformly distributed and $N \rightarrow + \infty$, for the CLT: +$$ + \sum_j \zeta_j (u) \quad \text{follows} \quad + G \left( \frac{r}{2}, \frac{r}{4} \right) + \thus \vartheta (u) \quad \text{follows} \quad + G \left( 0, 1 \right) +$$ + +. . . + +- Test statistic: +$$ + \chi^2 = \int_{\underbar{u}}^{\bar{u}} du \vartheta^2 (u) +$$ + + +## Trapani test + +According to L. Trapani (10.1016/j.jeconom.2015.08.006): + +- $r = o(N)$ +- $\underbar{u} = 1 \quad \wedge \quad \bar{u} = 1$ + +. . . + +$\mu_k$ must be scale invariant for $k > 1$: + +$$ + \tilde{\mu_k} = \frac{\mu_k}{ \left( \mu_{\phi} \right)^{k/\phi} } + \with \phi \in (0, k) +$$ + + +# Samples results + + +## Samples results + +$N = 50000$ sampled points + +. . . + +Landau sample: + +:::: {.columns} +::: {.column width=50%} + - $D = 0.004$ + - $p = 0.379$ +::: + +::: {.column width=50%} + $$ + \thus \text{Compatible!} + $$ +::: +:::: + +\vspace{10pt} + +. . . + +Moyal sample: + +:::: {.columns} +::: {.column width=50%} + - $D = 0.153$ + - $p = 0.000$ +::: + +::: {.column width=50%} + $$ + \thus \text{Not compatible!} + $$ +::: +::::