diff --git a/notes/sections/2.md b/notes/sections/2.md index 3fd348e..7584d5b 100644 --- a/notes/sections/2.md +++ b/notes/sections/2.md @@ -6,7 +6,8 @@ The Euler-Mascheroni constant is defined as the limiting difference between the partial sums of the harmonic series and the natural logarithm: $$ - \gamma = \lim_{n \rightarrow +\infty} \left( \sum_{k=1}^{n} \frac{1}{k} + \gamma = \lim_{n \rightarrow +\infty} \left( + \sum_{k=1}^{n} \frac{1}{k} - \ln(n) \right) $$ {#eq:gamma} @@ -150,7 +151,7 @@ terms of floating points). Different values of $z$ were checked, with $z_{i+1} = z_i + 0.01$ ranging from 0 to 20, and the best result was found for $z = 9$. ----------------------------------------------- -z $|γ(z) - γ|$ z $|γ(z) - γ|$ +z $|γ(z) - γ|$ z $|γ(z) - γ|$ ----- ---------------- ------ ---------------- 1 \num{9.712e-9} 8.95 \num{9.770e-9} @@ -170,7 +171,7 @@ z $|γ(z) - γ|$ z $|γ(z) - γ|$ 17 \num{9.971e-9} 9.03 \num{9.264e-9} - 19 \num{10.084e-9} 9.04 \num{9.419e-9} + 19 \num{1.008e-8} 9.04 \num{9.419e-9} ----------------------------------------------- Table: Differences between some obtained values of $\gamma$ and