ex-5: implement the code for plotting σ_MC vs calls
move all the functions to lib.c and lib.h; add this two librearies to makefile; make plot.py more easy to use for passing to one mode to the other (show or save figure); create fit_plot and create the figure 5-fit.pdf.
This commit is contained in:
parent
340c7a2690
commit
093faf3fe8
86
ex-5/lib.c
Normal file
86
ex-5/lib.c
Normal file
@ -0,0 +1,86 @@
|
||||
#include <gsl/gsl_fit.h>
|
||||
#include <stdio.h>
|
||||
#include <math.h>
|
||||
#include "lib.h"
|
||||
|
||||
|
||||
// Wrapper for the gsl_function structure
|
||||
//
|
||||
double function (double * x, size_t dim, void * params)
|
||||
{
|
||||
return exp(x[0]);
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Results printer.
|
||||
//
|
||||
void results (size_t calls, double result, double error, double chi)
|
||||
{
|
||||
if (calls != 0)
|
||||
{
|
||||
printf ("%6.0e | ", (double)calls);
|
||||
}
|
||||
printf ("%5f | ", result);
|
||||
printf ("%5f | ", error);
|
||||
if (chi != 0)
|
||||
{
|
||||
printf ("%5f", chi);
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Perform a fit in order to compare the data with the expected function:
|
||||
//
|
||||
// y = a⋅x^b → ln(y) = ln(a) + b⋅ln(x) → Y = A + B⋅X
|
||||
//
|
||||
// with:
|
||||
//
|
||||
// A = ln(a) → a = e^A
|
||||
// B = b → b = B
|
||||
//
|
||||
// using a linear regression. For b, the results is hence compared with the
|
||||
// expected one:
|
||||
//
|
||||
// b_exp = - 0.5
|
||||
//
|
||||
void fit (struct bag full_bag, double* p,
|
||||
double* a, double* a_err,
|
||||
double* b, double* b_err)
|
||||
{
|
||||
// Expected value.
|
||||
//
|
||||
double b_exp = -0.5;
|
||||
|
||||
// Parse arguments.
|
||||
//
|
||||
double size = full_bag.size;
|
||||
double* x = full_bag.pokets.x;
|
||||
double* y = full_bag.pokets.y;
|
||||
for (size_t i = 0; i < size; i++)
|
||||
{
|
||||
x[i] = log(x[i]);
|
||||
y[i] = log(y[i]);
|
||||
}
|
||||
|
||||
// Do fit.
|
||||
//
|
||||
double A, B, A_err, B_err, AB_cov, sum2;
|
||||
gsl_fit_linear(x, 1, y, 1, size, &A, &B, &A_err, &AB_cov, &B_err, &sum2);
|
||||
|
||||
// Parse results.
|
||||
//
|
||||
A_err = sqrt(A_err);
|
||||
B_err = sqrt(B_err);
|
||||
*a = exp(A);
|
||||
*b = B;
|
||||
*a_err = *a * A_err;
|
||||
*b_err = B_err;
|
||||
|
||||
// Check compatibility with expected values.
|
||||
//
|
||||
double t = fabs(*b - b_exp)/ *b_err;
|
||||
*p = 1 - erf(t/sqrt(2));
|
||||
}
|
||||
|
35
ex-5/lib.h
Normal file
35
ex-5/lib.h
Normal file
@ -0,0 +1,35 @@
|
||||
#pragma once
|
||||
|
||||
|
||||
// Subtruct for the results storage.
|
||||
//
|
||||
struct poket
|
||||
{
|
||||
double * x; // Vector with the numbers of function calls.
|
||||
double * y; // Vector with Plain MC error estimates.
|
||||
};
|
||||
|
||||
// Struct for the results storage.
|
||||
//
|
||||
struct bag
|
||||
{
|
||||
struct poket pokets; // Values.
|
||||
size_t size; // Quantity of values.
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Wrapper for the gsl_function structure.
|
||||
//
|
||||
double function (double * x, size_t dim, void * params);
|
||||
|
||||
// Results printer.
|
||||
//
|
||||
void results (size_t calls, double result, double error, double chi);
|
||||
|
||||
// Do a linear minimization fitting the model y = a⋅x^b. The p-value of the
|
||||
// compatibility test of b with the expected value -0.5 is returned in p.
|
||||
//
|
||||
void fit (struct bag full_bag, double* p,
|
||||
double* a, double* a_err,
|
||||
double* b, double* b_err);
|
90
ex-5/main.c
90
ex-5/main.c
@ -2,32 +2,9 @@
|
||||
#include <gsl/gsl_monte_miser.h>
|
||||
#include <gsl/gsl_monte_vegas.h>
|
||||
#include <gsl/gsl_monte.h>
|
||||
#include <stdio.h>
|
||||
#include <math.h>
|
||||
|
||||
|
||||
// exp() wrapper for the gsl_function structure
|
||||
//
|
||||
double function (double * x, size_t dim, void * params)
|
||||
{
|
||||
return exp(x[0]);
|
||||
}
|
||||
|
||||
|
||||
// Function which prints out the results when called.
|
||||
//
|
||||
void results (size_t calls, double result, double error, double chi)
|
||||
{
|
||||
if (calls != 0)
|
||||
{
|
||||
printf ("%6.0e | ", (double)calls);
|
||||
}
|
||||
printf ("%5f | ", result);
|
||||
printf ("%5f | ", error);
|
||||
if (chi != 0)
|
||||
{
|
||||
printf ("%5f", chi);
|
||||
}
|
||||
}
|
||||
#include "lib.h"
|
||||
|
||||
|
||||
int main(int argc, char** argv)
|
||||
@ -35,10 +12,24 @@ int main(int argc, char** argv)
|
||||
// Some useful variables.
|
||||
//
|
||||
size_t dims = 1; // Integral dimension
|
||||
double lower[1] = {0}; // Integration lower limit
|
||||
double upper[1] = {1}; // Integration upper limit
|
||||
size_t calls = 50; // Initial number of function calls
|
||||
double integral, error;
|
||||
double lower[1] = {0}; // Integration range lower limit
|
||||
double upper[1] = {1}; // Integration range upper limit
|
||||
double integral, error; // Result and error
|
||||
|
||||
// An integral is estimated with a number c_i of function calls.
|
||||
// Different number of function calls are tested.
|
||||
//
|
||||
size_t c_0 = 50; // Initial number of function calls
|
||||
size_t c_f = 50000000; // Final number of function calls
|
||||
size_t factor = 10; // c_(i+1) = c_i * factor
|
||||
size_t size = round(1 + log(c_f/c_0)/log(factor)); // Number of integrations
|
||||
|
||||
// A fit will be performed. This struct is needed to accomplish it.
|
||||
//
|
||||
struct bag full_bag;
|
||||
full_bag.pokets.x = calloc(size, sizeof(double));
|
||||
full_bag.pokets.y = calloc(size, sizeof(double));
|
||||
full_bag.size = size;
|
||||
|
||||
// Initialize an RNG.
|
||||
//
|
||||
@ -52,23 +43,18 @@ int main(int argc, char** argv)
|
||||
expo.dim = 1;
|
||||
expo.params = NULL;
|
||||
|
||||
// Print the results table header
|
||||
// Print the results table header.
|
||||
//
|
||||
printf(" Calls | Plain | Error | MISER |"
|
||||
" Error | VEGAS | Error | χ²\n");
|
||||
printf(" ------|----------|----------|----------|"
|
||||
"----------|----------|----------|---------\n");
|
||||
|
||||
// Compute the integral for the following number of function calls:
|
||||
// 50
|
||||
// 500
|
||||
// 5'000
|
||||
// 50'000
|
||||
// 500'000
|
||||
// 5'000'000
|
||||
// 50'000'000
|
||||
// with the three MC methods: plain MC, MISER and VEGAS.
|
||||
// Compute the integral with the three MC methods: plain MC, MISER and VEGAS.
|
||||
//
|
||||
while (calls <= 5000000)
|
||||
size_t calls = c_0;
|
||||
size_t i = 0;
|
||||
while (calls <= c_f)
|
||||
{
|
||||
// Plain MC
|
||||
gsl_monte_plain_state *sMC = gsl_monte_plain_alloc (dims);
|
||||
@ -77,6 +63,11 @@ int main(int argc, char** argv)
|
||||
gsl_monte_plain_free(sMC);
|
||||
results(calls, integral, error, 0);
|
||||
|
||||
// Update the struct for the fit.
|
||||
//
|
||||
full_bag.pokets.x[i] = calls;
|
||||
full_bag.pokets.y[i++] = error;
|
||||
|
||||
// MISER
|
||||
gsl_monte_miser_state *sMI = gsl_monte_miser_alloc (dims);
|
||||
gsl_monte_miser_integrate (&expo, lower, upper, dims, calls,
|
||||
@ -106,13 +97,28 @@ int main(int argc, char** argv)
|
||||
double chi = sVE->chisq;
|
||||
results(0, integral, error, chi);
|
||||
|
||||
|
||||
// Update function calls
|
||||
//
|
||||
printf ("\n");
|
||||
calls = calls*10;
|
||||
calls = calls*factor;
|
||||
}
|
||||
|
||||
// Do a fit of the Plain MC errors.
|
||||
//
|
||||
double p, a, a_err, b, b_err;
|
||||
fit(full_bag, &p, &a, &a_err, &b, &b_err);
|
||||
|
||||
// Print the fit results.
|
||||
//
|
||||
fprintf (stderr, "\n## Fit results:\n\n");
|
||||
fprintf (stderr, "a = %.5f\t", a);
|
||||
fprintf (stderr, "δa = %.5f\n", a_err);
|
||||
fprintf (stderr, "b = %.5f\t", b);
|
||||
fprintf (stderr, "δb = %.5f\n", b_err);
|
||||
fprintf (stderr, "p-value = %.5f\n", p);
|
||||
|
||||
// Free memory.
|
||||
//
|
||||
gsl_rng_free(r);
|
||||
|
||||
return EXIT_SUCCESS;
|
||||
|
25
ex-5/plot.py
25
ex-5/plot.py
@ -4,26 +4,29 @@ import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import sys
|
||||
|
||||
|
||||
table = np.loadtxt(sys.stdin, unpack=True, skiprows=2, delimiter='|')
|
||||
calls, I_MC, σ_MC, I_MI, σ_MI, I_VE, σ_VE, chi = table
|
||||
exact = 1.7182818285
|
||||
|
||||
plt.rcParams['font.size'] = 17
|
||||
|
||||
plt.figure()
|
||||
# plt.figure(figsize=(5, 3))
|
||||
# plt.rcParams['font.size'] = 8
|
||||
|
||||
plt.title('Plain MC', loc='right')
|
||||
plt.ylabel('$I^{oss}$')
|
||||
plt.xlabel('calls')
|
||||
plt.xscale('log')
|
||||
|
||||
plt.axhline(y=exact, color='#c556ea', linestyle='-',
|
||||
label='Exact value')
|
||||
plt.errorbar(calls, I_MC, linestyle='', marker='o',
|
||||
yerr=σ_MC, color='#92182b', label='Plain MC')
|
||||
plt.errorbar(calls, I_MI, linestyle='', marker='o',
|
||||
yerr=σ_MI, color='black', label='MISER')
|
||||
plt.errorbar(calls, I_VE, linestyle='', marker='o',
|
||||
yerr=σ_VE, color='gray', label='VEGAS')
|
||||
|
||||
plt.axhline(y=exact, color='#c556ea', linestyle='-', label='Exact value')
|
||||
plt.errorbar(calls, I_MC, linestyle='', marker='o', yerr=σ_MC,
|
||||
color='#92182b', label='Plain MC')
|
||||
plt.errorbar(calls, I_MI, linestyle='', marker='o', yerr=σ_MI,
|
||||
color='black', label='MISER')
|
||||
plt.errorbar(calls, I_VE, linestyle='', marker='o', yerr=σ_VE,
|
||||
color='gray', label='VEGAS')
|
||||
plt.legend()
|
||||
|
||||
# plt.tight_layout()
|
||||
# plt.savefig('notes/images/5-test.pdf')
|
||||
plt.show()
|
||||
|
31
ex-5/plots/fit_plot.py
Executable file
31
ex-5/plots/fit_plot.py
Executable file
@ -0,0 +1,31 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import sys
|
||||
|
||||
|
||||
table = np.loadtxt(sys.stdin, unpack=True, skiprows=2, delimiter='|')
|
||||
calls, I_MC, σ_MC, I_MI, σ_MI, I_VE, σ_VE, chi = table
|
||||
exact = 1.7182818285
|
||||
|
||||
plt.figure()
|
||||
# plt.figure(figsize=(5, 3))
|
||||
# plt.rcParams['font.size'] = 8
|
||||
|
||||
plt.title('Integral uncertainty', loc='right')
|
||||
plt.ylabel('$\sigma_I$')
|
||||
plt.xlabel('calls')
|
||||
plt.xscale('log')
|
||||
plt.yscale('log')
|
||||
|
||||
plt.plot(calls, σ_MC, linestyle='', marker='o',
|
||||
color='#92182b', label='$\sigma_I$')
|
||||
x = np.logspace(1, 8, 5)
|
||||
a = 0.48734
|
||||
b = -0.49938
|
||||
plt.plot(x, a*(x**b), color='gray')
|
||||
|
||||
plt.tight_layout()
|
||||
# plt.savefig('notes/images/5-fit.pdf')
|
||||
plt.show()
|
2
makefile
2
makefile
@ -27,7 +27,7 @@ ex-4/bin/main: ex-4/main.c ex-4/lib.c
|
||||
$(CCOMPILE)
|
||||
|
||||
ex-5: ex-5/bin/main
|
||||
ex-5/bin/%: ex-5/%.c
|
||||
ex-5/bin/%: ex-5/main.c ex-5/lib.c
|
||||
$(CCOMPILE)
|
||||
|
||||
ex-6: ex-6/bin/main ex-6/bin/test
|
||||
|
BIN
notes/images/5-fit.pdf
Normal file
BIN
notes/images/5-fit.pdf
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user